• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大直径铝锭热顶铸造中超声施振深度的细晶机制

王莹 李晓谦 李瑞卿 田阳

王莹, 李晓谦, 李瑞卿, 田阳. 大直径铝锭热顶铸造中超声施振深度的细晶机制[J]. 工程科学学报, 2019, 41(1): 96-103. doi: 10.13374/j.issn2095-9389.2019.01.010
引用本文: 王莹, 李晓谦, 李瑞卿, 田阳. 大直径铝锭热顶铸造中超声施振深度的细晶机制[J]. 工程科学学报, 2019, 41(1): 96-103. doi: 10.13374/j.issn2095-9389.2019.01.010
WANG Ying, LI Xiao-qian, LI Rui-qing, TIAN Yang. Fine grain mechanism of ultrasonic vibration depth in large diameter aluminum ingot hot-top casting[J]. Chinese Journal of Engineering, 2019, 41(1): 96-103. doi: 10.13374/j.issn2095-9389.2019.01.010
Citation: WANG Ying, LI Xiao-qian, LI Rui-qing, TIAN Yang. Fine grain mechanism of ultrasonic vibration depth in large diameter aluminum ingot hot-top casting[J]. Chinese Journal of Engineering, 2019, 41(1): 96-103. doi: 10.13374/j.issn2095-9389.2019.01.010

大直径铝锭热顶铸造中超声施振深度的细晶机制

doi: 10.13374/j.issn2095-9389.2019.01.010
基金项目: 

国家自然科学基金资助项目(51475480,51575539,51605496,U1637601)

中南大学研究生自主探索创新资助项目(1053320171530)

详细信息
  • 中图分类号: TG148;TB559

Fine grain mechanism of ultrasonic vibration depth in large diameter aluminum ingot hot-top casting

  • 摘要: 在直径为650 mm的铝合金热顶半连续铸造过程中施加双源超声振动系统,研究3种超声辐射杆浸入深度对铸锭宏观凝固组织的影响.基于铝合金铸锭凝固组织形貌的检测结果以及ANSYS等有限元软件对铸造过程中声场的仿真结果,深入探讨了超声辐射杆在不同的施振深度下对铝合金铸锭凝固组织细化机制的影响.结果表明:随着超声辐射杆施振深度的增加,铸锭截面组织整体进一步细化,晶粒形状由发达的枝晶变为等轴枝晶;由于超声辐射杆端面以及柱面存在几个固定位置处振动波峰,在铝熔体中不同的超声施振深度下存在不同的超声空化范围,进而导致凝固组织的细化机制也不同.
  • [1] Wang F, Eskin D, Connolley T, et al. Effect of ultrasonic melt treatment on the refinement of primary Al3Ti intermetallic in an Al-0.4Ti alloy. J Cryst Growth, 2016, 435:24
    [2] Moholkar V S, Rekveld S, Warmoeskerken M M C G. Modeling of the acoustic pressure fields and the distribution of the cavitation phenomena in a dual frequency sonic processor. Ultrasonics, 2000,38(1-8):666
    [3] Li X T, Li T J, Li X M, et al. Study of ultrasonic melt treatment on the quality of horizontal continuously cast Al-1%Si alloy. Ultrason Sonochem, 2006, 13(2):121
    [4] Eskin G I. Effect of ultrasonic (cavitation) treatment of the melt on the microstructure evolution during solidification of aluminum alloy ingots. Z Metallkd, 2002, 93(6):502
    [5] Komarov S V, Kuwabara M, Abramov O V. High power ultrasonic in pyrometallurgy:current status and recent development. ISIJ Int, 2005, 45(12):1765
    [8] Li R Q, Liu Z L, Dong F, et al. Grain refinement of a large-scale Al alloy casting by introducing the multiple ultrasonic generators during solidification. Metall Mater Trans A, 2016, 47(8):3790
    [9] Tudela I, Sáez V, Esclapez M D, et al. Simulation of the spatial distribution of the acoustic pressure in sonochemical reactors with numerical methods:a review. Ultrason Sonochem, 2014, 21(3):909
    [10] Eskin G I. Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys. Ultrason Sonochem, 2001, 8(3):319
    [11] Liu X B, Osawa Y, Takamori S, et al. Microstructure and mechanical properties of AZ91 alloy produced with ultrasonic vibration. Mater Sci Eng A, 2008, 487(1-2):120
    [12] Eskin G I. Principles of ultrasonic treatment:application for light alloys melts. Adv Perform Mater, 1997, 4(2):223
    [13] Nie M X. Cavitation prevention with roughened surface. J Hydraul Eng, 2015, 127(10):878
    [14] Doyle W M. Aluminum alloys:structure and properties. Met Sci, 1976, 35(11):408
    [18] Dong F, Li X Q, Zhang L H, et al. Cavitation erosion mechanism of titanium alloy radiation rods in aluminum melt. Ultrason Sonochem, 2016, 31:150
  • 加载中
计量
  • 文章访问数:  501
  • HTML全文浏览量:  89
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-07

目录

    /

    返回文章
    返回