• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油水两相界面处缓蚀剂的作用效果及机理

贾巧燕 王贝 王赟 孟凡娟 王清 张雷 姚海元 路民旭 李清平

贾巧燕, 王贝, 王赟, 孟凡娟, 王清, 张雷, 姚海元, 路民旭, 李清平. 油水两相界面处缓蚀剂的作用效果及机理[J]. 工程科学学报, 2020, 42(2): 225-232. doi: 10.13374/j.issn2095-9389.2019.01.11.001
引用本文: 贾巧燕, 王贝, 王赟, 孟凡娟, 王清, 张雷, 姚海元, 路民旭, 李清平. 油水两相界面处缓蚀剂的作用效果及机理[J]. 工程科学学报, 2020, 42(2): 225-232. doi: 10.13374/j.issn2095-9389.2019.01.11.001
JIA Qiao-yan, WANG Bei, WANG Yun, MENG Fan-juan, WANG Qing, ZHANG Lei, YAO Hai-yuan, LU Min-xu, LI Qing-ping. Inhibition effect and mechanism of corrosion inhibitor at oil-water interface region[J]. Chinese Journal of Engineering, 2020, 42(2): 225-232. doi: 10.13374/j.issn2095-9389.2019.01.11.001
Citation: JIA Qiao-yan, WANG Bei, WANG Yun, MENG Fan-juan, WANG Qing, ZHANG Lei, YAO Hai-yuan, LU Min-xu, LI Qing-ping. Inhibition effect and mechanism of corrosion inhibitor at oil-water interface region[J]. Chinese Journal of Engineering, 2020, 42(2): 225-232. doi: 10.13374/j.issn2095-9389.2019.01.11.001

油水两相界面处缓蚀剂的作用效果及机理

doi: 10.13374/j.issn2095-9389.2019.01.11.001
基金项目: 国家科技重大专项资助项目(2016ZX05028-004)
详细信息
    通讯作者:

    E-mail:zhanglei@ustb.edu.cn

  • 中图分类号: TG172.9

Inhibition effect and mechanism of corrosion inhibitor at oil-water interface region

More Information
  • 摘要: 利用旋转圆柱电极,结合电化学方法(电化学交流阻抗、极化曲线)、激光扫描共聚焦显微镜、扫描电子显微镜和紫外-可见分光光度法研究了流动工况下油水分层介质中缓蚀剂在油水两相界面处的作用效果及机理。结果表明,该工况下,100 mg·L−1十七烯基胺乙基咪唑啉季铵盐缓蚀剂对碳钢在油水两相分层介质中的水区具有良好的缓蚀效果,缓蚀效率高达99%,但在油水两相界面区域,由于油相的大量存在,导致缓蚀剂的有效质量分数降为混合前的31%,缓蚀效率仅为83%,缓蚀效果较差,碳钢腐蚀未得到有效抑制,甚至出现了沟槽腐蚀。因此,在油区试样腐蚀轻微,并且缓蚀剂的加入有效抑制了水区X65钢的腐蚀。
  • 图  1  十七烯基胺乙基咪唑啉季铵盐的结构

    Figure  1.  Structure of seventeen alkenyl amide ethyl imidazoline quaternary ammonium salt

    图  2  旋转圆柱电极装置示意图

    Figure  2.  Schematic of the rotating cylindrical electrode

    图  3  X65钢在油水分层介质中的电化学测试结果. (a) 动电位极化曲线; (b) 阳极脱附平台; (c) 腐蚀速率; (d) 缓蚀效率

    Figure  3.  Electrochemical test results of X65 steel in oil–water stratified medium: (a) potentiodynamic polarization curve; (b) anode desorption platform; (c) corrosion rate; (d) corrosion inhibition efficiency

    图  4  X65钢在油水分层介质不同区域中的交流阻抗谱. (a) 水区, 0; (b) 水区, 100 mg·L−1; (c) 耦合, 0; (d) 耦合, 100 mg·L−1

    Figure  4.  EIS results of X65 steel measured at different areas of oil–water stratified medium: (a) in water region, 0; (b) in water region, 100 mg·L−1; (c) coupled, 0; (d) coupled, 100 mg·L−1

    图  5  EIS等效电路图. (a) 单容抗;(b) 双容抗;(c) 容抗 + 感抗 + 容抗

    Figure  5.  Equivalent circuit used for fitting the EIS results: (a) single capacitive reactance; (b) double capacitive reactance; (c) capacitive reactance + inductive reactance + capacitive reactance

    图  6  EIS拟合结果所得Rp

    Figure  6.  Rp values of EIS fitting result

    图  7  X65钢在油水分层介质中浸泡24 h后的腐蚀形貌. (a) 未加OAI酸洗前; (b) 未加OAI酸洗后; (c) 加OAI酸洗前; (d) 加OAI酸洗后; (e) 激光共聚焦三维形貌

    Figure  7.  Corrosion morphology of X65 steel in oil–water stratified medium after immersion for 24 h: (a) before pickling without OAI; (b) after pickling without OAI; (c) before pickling with OAI; (d) after pickling with OAI; (e) 3D profile of microcorrosion morphologies

    图  8  紫外可见分光光度计测试结果。(a) 纯水相;(b) 油水分配后;(c) 特征峰吸光度

    Figure  8.  Test results of ultraviolet visible spectrophotometer: (a) in aqueous phase; (b) after oil and water partition; (c) characteristic peak absorbance

    图  9  十七烯基胺乙基咪唑啉季铵盐缓蚀剂在油水两相分层介质不同区域中的作用机理. (a) 水区; (b) 两相界面处; (c) 油区

    Figure  9.  Schematic diagram of mechanism of seventeen alkenyl amide ethyl imidazoline quaternary ammonium salt in different zones of oil–water stratified medium: (a) in water region; (b) at the oil–water interface; (c) in oil region

    表  1  实验用X65钢的化学成分(质量分数)

    Table  1.   Chemical composition of the X65 steel %

    CSiMnPMoSFe
    0.0400.2001.5000.0110.0200.003余量
    下载: 导出CSV

    表  2  油田地层水采出液的组分

    Table  2.   Composition of the test solution simulating the oilfield formation water mg·L−1

    Na+Mg2+Ca2+K+Cl${\rm{SO}}_4^{2 - }$${\rm{HCO}}_3^ - $
    262311920274764435297197519
    下载: 导出CSV

    表  3  等效电路各参数值

    Table  3.   Parameter values of the equivalent circuit

    介质质量浓度/
    (mg·L−1)
    时间/hRs/(Ω·cm2)CPEfRfCPEdlRct/(Ω·cm2)RL/(Ω·cm2)L/H
    ${Y_1}/({\rm{S}} \cdot {{\rm{s}}^{{n_1}}} \cdot {\rm{c}}{{\rm{m}}^{ - 2}})$n1${Y_2}/({\rm{S}} \cdot {{\rm{s}}^{{n_2}}} \cdot {\rm{c}}{{\rm{m}}^{ - 2}})$n2
    水区0211.389.070.80078.44
    68.1913.430.78987.22
    2439.1413840.8960.7018600.96622.51
    水区10020.010.0010.615331224.901218
    610.9837.320.671398139.700.857818.90864114370
    2426.93143.900.531926353.401105837511049
    耦合022.7214.960.77840.40
    627.5219.140.80043.85
    243.3527930.8624.4796990.9735.98
    耦合10023.196.510.750231.40
    61.0012680.3533.800.610.981344.50518.80193.20
    240.04752.200.4480.710.710.924364.901315631.80
    下载: 导出CSV
  • [1] Wang H W, Hong T, Cai J Y, et al. Enhanced mass transfer and wall shear stress in multiphase slow flow // Corrosion 2002. Denver, 2002: 02501
    [2] Cai J Y, Nesic S, de Waard C. Modeling of water wetting in oil-water pipe flow // Corrosion 2004. New Orleans, 2004: 04663
    [3] 路民旭, 白真权, 赵新伟, 等. 油气采集储运中的腐蚀现状及典型案例. 腐蚀与防护, 2002, 23(3):105 doi: 10.3969/j.issn.1005-748X.2002.03.005

    Lu M X, Bai Z Q, Zhao X W, et al. Actuality and typical cases for corrosion in the process of extraction, gathering, storage and transmission for oil and gas. Corros Prot, 2002, 23(3): 105 doi: 10.3969/j.issn.1005-748X.2002.03.005
    [4] Palacios C A, Shadley J R. CO2 corrosion of N-80 steel at 71 ℃ in a two-phase flow system. Corrosion, 1993, 49(8): 686 doi: 10.5006/1.3316101
    [5] Kang C, Gopal M, Jepson W P. Localized corrosion in multiphase pipelines // Corrosion 2004. New Orleans, 2004: 04381
    [6] 李自力, 程远鹏, 毕海胜, 等. 油气田CO2/H2S共存腐蚀与缓蚀技术研究进展. 化工学报, 2014, 65(2):406 doi: 10.3969/j.issn.0438-1157.2014.02.006

    Li Z L, Cheng Y F, Bi H S, et al. Research progress of CO2/H2S corrosion and inhibitor techniques in oil and gas fields. CIESC J, 2014, 65(2): 406 doi: 10.3969/j.issn.0438-1157.2014.02.006
    [7] Nesic S, Wang S H, Cai J Y, et al. Integrated CO2 corrosion-multiphase flow model // SPE International Symposium on Oilfield Corrosion. Aberdeen, 2004: SPE-87555-MS
    [8] Zhang J X, Kang J, Fan J C, et al. Study on erosion wear of fracturing pipeline under the action of multiphase flow in oil & gas industry. J Nat Gas Sci Eng, 2016, 32: 334 doi: 10.1016/j.jngse.2016.04.056
    [9] 程远鹏, 白羽, 李自力, 等. 集输管道CO2/油/水环境中X65钢的腐蚀特征. 工程科学学报, 2018, 40(5):594

    Cheng Y P, Bai Y, Li Z L, et al. Corrosion characteristics of X65 steel in CO2/oil /water environment of gathering pipeline. Chin J Eng, 2018, 40(5): 594
    [10] Goyal M, Kumar S, Bahadur I, et al. Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: a review. J Molecular Liquids, 2018, 256: 565 doi: 10.1016/j.molliq.2018.02.045
    [11] Choi H, Tonsuwannarat T. Unique roles of hydrocarbons in flow-induced sweet corrosion of X-52 carbon steel in wet gas condensate producing wells // Corrosion 2002. Denver, 2002: 02559
    [12] Choi H J. Effect of liquid hydrocarbons on flow-induced sweet corrosion of carbon steel // Corrosion 2004. New Orleans, 2004: 04664
    [13] 刘小武, 郑家燊. 少量柴油对盐水介质中碳钢腐蚀的影响. 材料保护, 1999, 32(1):1 doi: 10.3969/j.issn.1001-1560.1999.01.001

    Liu X W, Zheng J S. Effects of a small amount of diesel fuel oil on corrosion of carbon steel in brine medium. Mater Prot, 1999, 32(1): 1 doi: 10.3969/j.issn.1001-1560.1999.01.001
    [14] 刘小武, 彭芳明, 俞敦义, 等. 输油管线缓蚀剂的研究. 材料保护, 2000, 33(8):3 doi: 10.3969/j.issn.1001-1560.2000.08.002

    Liu X W, Peng F M, Yu D Y, et al. Corrosion inhibitor for oil pipeline. Mater Prot, 2000, 33(8): 3 doi: 10.3969/j.issn.1001-1560.2000.08.002
    [15] 赵景茂, 李玉龙, 谷丰, 等. H2S/CO2腐蚀环境中原油对缓蚀剂缓蚀性能的影响. 腐蚀科学与防护技术, 2016, 28(5):423

    Zhao J M, Li Y L, Gu F, et al. Influence of crude oil on inhibition performance of corrosion inhibitors in H2S/CO2 containing brines. Corros Sci Prot Technol, 2016, 28(5): 423
    [16] 刘烈炜, 赵小蓉, 胡倩. 油水两相共存下咪唑啉缓蚀剂的缓蚀效率. 油气田地面工程, 2001, 20(1):25 doi: 10.3969/j.issn.1006-6896.2001.01.015

    Liu L W, Zhao X R, Hu Q. Study on corrosion inhibiting efficiency of imidazoline corrosion inhibitor in oil-water coexistence condition. Oil-Gasfield Surf Eng, 2001, 20(1): 25 doi: 10.3969/j.issn.1006-6896.2001.01.015
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  815
  • HTML全文浏览量:  475
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-11
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回