• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MOF晶体薄膜材料的制备及应用

王丹 王正帮 王敬锋 鲁雄刚 周忠福

王丹, 王正帮, 王敬锋, 鲁雄刚, 周忠福. MOF晶体薄膜材料的制备及应用[J]. 工程科学学报, 2019, 41(3): 292-306. doi: 10.13374/j.issn2095-9389.2019.03.002
引用本文: 王丹, 王正帮, 王敬锋, 鲁雄刚, 周忠福. MOF晶体薄膜材料的制备及应用[J]. 工程科学学报, 2019, 41(3): 292-306. doi: 10.13374/j.issn2095-9389.2019.03.002
WANG Dan, WANG Zheng-bang, WANG Jing-feng, LU Xiong-gang, ZHOU Zhong-fu. Fabrication methods and applications of metal-organic framework thin films[J]. Chinese Journal of Engineering, 2019, 41(3): 292-306. doi: 10.13374/j.issn2095-9389.2019.03.002
Citation: WANG Dan, WANG Zheng-bang, WANG Jing-feng, LU Xiong-gang, ZHOU Zhong-fu. Fabrication methods and applications of metal-organic framework thin films[J]. Chinese Journal of Engineering, 2019, 41(3): 292-306. doi: 10.13374/j.issn2095-9389.2019.03.002

MOF晶体薄膜材料的制备及应用

doi: 10.13374/j.issn2095-9389.2019.03.002
基金项目: 

国家重点基础研究发展计划资助项目(2014CB643403)

自然科学基金资助项目(51371112)

详细信息
  • 中图分类号: TG142.71

Fabrication methods and applications of metal-organic framework thin films

  • 摘要: 作为纳米技术领域的一种新材料,金属-有机骨架(metal-organic framework,MOF)薄膜材料(也称为SURMOFs)获得了越来越多研究者的关注.多种合成方法的不断提出,为大量合成膜厚度、均匀性、形态、甚至维度均可控的MOF薄膜材料提供了可能性,并为薄膜材料在更多领域中的应用提供了机会.本文首先介绍了MOF薄膜材料基于液相或真空的各种合成方法及其适用范围,其中,获得高质量薄膜的最有效方法之一是在基底材料上沉积自组装单层(SAMs),进而诱导MOF薄膜的成核及生长.其次,总结了近年来MOF薄膜材料在分离、催化、传感等领域的研究进展,以及为满足环境可持续发展和对清洁能源的需求,新发展起来的在光催化、储能、光伏以及制备各种电子器件领域的应用.在此基础上,讨论了限制MOF薄膜实际应用的因素(例如薄膜生长机制需要更深入的研究、薄膜质量及薄膜热电性能等有待进一步提高等),对相关领域未来的研究方向进行了展望,以期为MOF薄膜材料进一步的研究发展提供理论参考.
  • [1] Li B, Wen H M, Cui Y J, et al. Emerging multifunctional metalorganic framework materials. Adv Mater, 2016, 28(40):8819
    [2] Kaneti Y V, Dutta S, Hossain M S A, et al. Strategies for improving the functionality of zeolitic imidazolate frameworks:tailoring nanoarchitectures for functional applications. Adv Mater, 2017, 29(38):ArtNo. 1700213-1
    [3] Loiseau T, Volkringer C, Haouas M, et al. Crystal chemistry of aluminium carboxylates:from molecular species towards porous infinite three-dimensional networks. C R Chim, 2015, 18(12):1350
    [5] Li Y S, Yang W S. Molecular sieve membranes:from 3D zeolites to 2D MOFs. Chin J Catal, 2015, 36(5):692
    [6] Andres M A, Benzaqui M, Serre C, et al. Fabrication of ultrathin MIL-96(Al) films and study of CO2 adsorption/desorption processes using quartz crystal microbalance. J Colloid Interface Sci, 2018, 519:88
    [7] Zhang J, Xia T F, Zhao D, et al. In situ secondary growth of Eu (Ⅲ)-organic framework film for fluorescence sensing of sulfur dioxide. Sens Actuators B, 2018, 260:63
    [8] Rubio-Gimenez V, Galbiati M, Castells-Gil J, et al. Bottom-up fabrication of semiconductive metal-organic framework ultrathin films. Adv Mater, 2018, 30(10):1704291
    [9] Shete M, Kumar P, Bachman J E, et al. On the direct synthesis of Cu(BDC) MOF nanosheets and their performance in mixed matrix membranes. J Membr Sci, 2018, 549:312
    [10] Bétard A, Fischer R A. Metal-organic framework thin films:from fundamentals to applications. Chem Rev, 2012, 112(2):1055
    [11] Sakaida S, Otsubo K, Sakata O, et al. Crystalline coordination framework endowed with dynamic gate-opening behaviour by being downsized to a thin film. Nat Chem, 2016, 8(4):377
    [12] Edler K J, Yang B. Formation of mesostructured thin films at the air-liquid interface. Chem Soc Rev, 2013, 42(9):3765
    [13] Genesio G, Maynadie J, Carboni M, et al. Recent status on MOF thin films on transparent conductive oxides substrates (ITO or FTO). New J Chem, 2018, 42(4):2351
    [14] He Y R, Tang Y P, Ma D C, et al. UiO-66 incorporated thinfilm nanocomposite membranes for efficient selenium and arsenic removal. J Membr Sci, 2017, 541:262
    [15] Chernikova V, Shekhah O, Eddaoudi M. Advanced fabrication method for the preparation of MOF thin films:liquid-phase epitaxy approach meets spin coating method. ACS Appl Mater Interfaces, 2016, 8(31):20459
    [16] Chen Y F, Li S Q, Pei X K, et al. A solvent-free hot-pressing method for preparing metal-organic-framework coatings. Angew Chem Int Ed, 2016, 55(10):3419
    [17] Li W J, Gao S Y, Liu T F, et al. In situ growth of metal-organic framework thin films with gas sensing and molecule storage properties. Langmuir, 2013, 29(27):8657
    [18] Shekhah O, Fu L L, Sougrat R, et al. Successful implementation of the stepwise layer-by-layer growth of MOF thin films on confined surfaces:mesoporous silica foam as a first case study. Chem Commun, 2012, 48(93):11434
    [19] Sun Y X, Yang F, Wei Q, et al. Oriented nano-microstructureassisted controllable fabrication of metal-organic framework membranes on nickel foam. Adv Mater, 2016, 28(12):2374
    [20] Yao M S, Tang W X, Wang G E, et al. MOF thin film-coated metal oxide nanowire array:significantly improved chemiresistor sensor performance. Adv Mater, 2016, 28(26):5229
    [21] Bao T, Zhang J, Zhang W P, et al. Growth of metal-organic framework HKUST-1 in capillary using liquid-phase epitaxy for open-tubular capillary electrochromatography and capillary liquid chromatography. J Chromatogr A, 2015, 1381:239
    [22] Dou Z S, Cai J F, Cui Y J, et al. Preparation and gas separation properties of metal organic framework membranes. Z Anorg Allg Chem, 2015, 641(5):792
    [23] Hromadka J, Tokay B, Correia R, et al. Highly sensitive volatile organic compounds vapour measurements using a long period grating optical fibre sensor coated with metal organic framework ZIF-8. Sens Actuators B, 2018, 260:685
    [24] Toyao T, Styles M J, Yago T, et al. Fe3O4@HKUST-1 and Pd/Fe3O4@HKUST-1 as magnetically recyclable catalysts prepared via conversion from a Cu-based ceramic. CrystEngComm, 2017, 19(29):4201
    [25] Lee D T, Zhao J J, Oldham C J, et al. UiO-66-NH2 metal-organic framework (MOF) nucleation on TiO2, ZnO, and Al2O3 atomic layer deposition-treated polymer fibers:role of metal oxide on MOF growth and catalytic hydrolysis of chemical warfare agent simulants. ACS Appl Mater Interfaces, 2017, 9(51):44847
    [27] Janghouri M, Hosseini H. Water-soluble metal-organic framework hybrid electron injection layer for organic light-emitting devices. J Inorg Organomet Polym Mater, 2017, 27(6):1800
    [28] Hou J W, Sutrisna P D, Zhang Y T, et al. Formation of ultrathin, continuous metal-organic framework membranes on flexible polymer substrates. Angew Chem Int Ed, 2016, 55(12):3947
    [29] Wang N Y, Liu Y, Qiao Z W, et al. Polydopamine-based synthesis of a zeolite imidazolate framework ZIF-100 membrane with high H2/CO2 selectivity. J Mater Chem A, 2015, 3(8):4722
    [30] Liu J X, Shekhah O, Stammer X, et al. Deposition of metal-organic frameworks by liquid-phase epitaxy:the influence of substrate functional group density on film orientation. Materials, 2012, 5(9):1581
    [31] Virmani E, Rotter J M, Mahringer A, et al. On-surface synthesis of highly oriented thin metal-organic framework films through vapor-assisted conversion. J Am Chem Soc, 2018, 140(14):4812
    [32] Zhuang J L, Terfort A, Wöll C. Formation of oriented and patterned films of metal-organic frameworks by liquid phase epitaxy:a review. Coord Chem Rev, 2016, 307:391
    [33] Guo Y, Mao Y Y, Hu P, et al. Self-confined synthesis of HKUST-1 membranes from CuO nanosheets at room temperature. Chemistry Select, 2016, 1(1):108
    [34] Liu Y, Pan J H, Wang N Y, et al. Remarkably enhanced gas separation by partial self-conversion of a laminated membrane to metal-organic frameworks. Angew Chem Int Ed, 2015, 127(10):3071
    [35] Brower L J, Gentry L K, Napier A L, et al. Tailoring the nanoscale morphology of HKUST-1 thin films via codeposition and seeded growth. Beilstein J Nanotechnol, 2017, 8:2307
    [36] Ismail F M, Abdellah A M, Ali P A, et al. Bilayer sandwichlike membranes of metal organic frameworks-electrospun polymeric nanofibers via SiO 2 nanoparticles seeding. Mater Today Commun, 2017, 12:119
    [37] Liu J X, Wöll C. Surface-supported metal-organic framework thin films:fabrication methods, applications, and challenges. Chem Soc Rev, 2017, 46(19):5730
    [38] Horiuchi Y, Toyao T, Miyahara K, et al. Visible-light-driven photocatalytic water oxidation catalysed by iron-based metal-organic frameworks. Chem Commun, 2016, 52(29):5190
    [39] Fan L L, Xue M, Kang Z X, et al. Electrospinning technology applied in zeolitic imidazolate framework membrane synthesis. J Mater Chem, 2012, 22(48):25272
    [40] Shekhah O, Wang H, Kowarik S, et al. Step-by-step route for the synthesis of metal-organic frameworks. J Am Chem Soc, 2007, 129(49):15118
    [41] Hurrle S, Friebe S, Wohlgemuth J, et al. Sprayable, large-area metal-organic framework films and membranes of varying thickness. Chem Eur J, 2017, 23(10):2294
    [42] Gliemann H, Wöll C. Epitaxially grown metal-organic frameworks. Mater Today, 2012, 15(3):110
    [43] Ameloot R, Vermoortele F, Vanhove W, et al. Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability. Nat Chem, 2011, 3(5):382
    [44] Makiura R, Konovalov O. Interfacial growth of large-area singlelayer metal-organic framework nanosheets. Sci Rep, 2013, 3:ArtNo. 2506-1
    [45] Gu P, Qian L N, Yan Z D, et al. Fabrication and infrared-transmission properties of a free-standing monolayer of hexagonalclose-packed dielectric microspheres. Opt Commun, 2018, 419:103
    [46] Otsubo K, Kitagawa H. Metal-organic framework thin films with well-controlled growth directions confirmed by x-ray study. APL Mater, 2014, 2(12):124105
    [47] Makiura R, Motoyama S, Umemura Y, et al. Surface nano-architecture of a metal-organic framework. Nat Mater, 2010, 9(7):565
    [48] Wang Y X, Zhao M T, Ping J F, et al. Bioinspired design of ultrathin 2D bimetallic metal-organic-framework nanosheets used as biomimetic enzymes. Adv Mater, 2016, 28(21):4149
    [49] Zhao Y B, Kornienko N, Liu Z, et al. Mesoscopic constructs of ordered and oriented metal-organic frameworks on plasmonic silver nanocrystals. J Am Chem Soc, 2015, 137(6):2199
    [50] Müller U, Puetter H, Hesse M, et al. Method for Electrochemical Production of A Crystalline Porous Metal Organic Skeleton Material:US Patent, 7968739B2.2011-6-28
    [51] Li W J, Liu J, Sun Z H, et al. Integration of metal-organic frameworks into an electrochemical dielectric thin film for electronic applications. Nat Commun, 2016, 7:11830
    [52] Feng J F, Yang X, Gao S Y, et al. Facile and rapid growth of nanostructured Ln-BTC metal-organic framework films by electrophoretic deposition for explosives sensing in gas and Cr3+ detection in solution. Langmuir, 2017, 33(50):14238
    [53] Li M Y, Dinca M. Reductive electrosynthesis of crystalline metal-organic frameworks. J Am Chem Soc, 2011, 133(33):12926
    [54] Stassen I, Styles M, Grenci G, et al. Chemical vapour deposition of zeolitic imidazolate framework thin films. Nat Mater, 2016, 15(3):304
    [55] Ahvenniemi E, Karppinen M. In situ atomic/molecular layer-bylayer deposition of inorganic-organic coordination network thin films from gaseous precursors. Chem Mater, 2016, 28(17):6260
    [56] Lemaire P C, Zhao J J, Williams P S, et al. Copper benzenetricarboxylate metal-organic framework nucleation mechanisms on metal oxide powders and thin films formed by atomic layer deposition. ACS Appl Mater Interfaces, 2016, 8(14):9514
    [57] Delen G, Ristanović Z, Mandemaker L D B, et al. Mechanistic insights into growth of surface-mounted metal-organic framework films resolved by infrared (nano-) spectroscopy. Chem Eur J, 2018, 24(1):187
    [58] Worrall S D, Bissett M A, Hill P I, et al. Metal-organic framework templated electrodeposition of functional gold nanostructures. Electrochim Acta, 2016, 222:361
    [59] Liu J X, Redel E, Walheim S, et al. Monolithic high performance surface anchored metal-organic framework Bragg reflector for optical sensing. Chem Mater, 2015, 27(6):1991
    [60] Otsubo K, Haraguchi T, Sakata O, et al. Step-by-step fabrication of a highly oriented crystalline three-dimensional pillared-layer-type metal-organic framework thin film confirmed by synchrotron X-ray diffraction. J Am Chem Soc, 2012, 134(23):9605
    [61] Haraguchi T, Otsubo K, Sakata O, et al. Remarkable lattice shrinkage in highly oriented crystalline three-dimensional metalorganic framework thin films. Inorg Chem, 2015, 54(24):11593
    [62] Zhu Y H, Ciston J, Zheng B, et al. Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy. Nat Mater, 2017, 16(5):532
    [63] Cliffe M J, Wan W, Zou X D, et al. Correlated defect nanoregions in a metal-organic framework. Nat Commun, 2014, 5:4176
    [64] Kozachuk O, Meilikhov M, Yusenko K, et al. A solid-solution approach to mixed-metal metal-organic frameworks-detailed characterization of local structures, defects and breathing behaviour of Al/V frameworks. Eur J Inorg Chem, 2013, 2013(26):4546
    [65] St Petkov P, Vayssilov G N, Liu J X, et al. Defects in MOFs:a thorough characterization. Chem Phys Chem, 2012, 13(8):2025
    [66] Bennett T D, Todorova T K, Baxter E F, et al. Connecting defects and amorphization in UiO-66 and MIL-140 metal-organic frameworks:a combined experimental and computational study. Phys Chem Chem Phys, 2016, 18(3):2192
    [67] Feyand M, Mugnaioli E, Vermoortele F, et al. Automated diffraction tomography for the structure elucidation of twinned, submicrometer crystals of a highly porous, catalytically active bismuth metal-organic framework. Angew Chem Int Ed, 2012, 124(41):10519
    [68] Vermoortele F, Bueken B, Le Bars G, et al. Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks:the unique case of UiO-66(Zr). J Am Chem Soc, 2013, 135(31):11465
    [69] Adatoz E, Avci A K, Keskin S. Opportunities and challenges of MOF-based membranes in gas separations. Sep Purif Technol, 2015, 152:207
    [70] Huang K, Liu S N, Li Q Q, et al. Preparation of novel metalcarboxylate system MOF membrane for gas separation. Sep Purif Technol, 2013, 119:94
    [71] Hu Y X, Dong X L, Nan J P, et al. Metal-organic framework membranes fabricated via reactive seeding. Chem Commun, 2011, 47(2):737
    [72] Münch A S, Seidel J, Obst A, et al. High-separation performance of chromatographic capillaries coated with MOF-5 by the controlled SBU approach. Chem Eur J, 2011, 17(39):10958
    [73] Ramos-Fernandez E V, Garcia-Domingos M, Juan-Alcaniz J, et al. MOFs meet monoliths:Hierarchical structuring metal organic framework catalysts. Appl Catal A, 2011, 391(1-2):261
    [74] Zhang T Y, Liu W X, Meng G, et al. Construction of hierarchical copper-based metal-organic framework nanoarrays as functional structured catalysts. Chem Cat Chem, 2017, 9(10):1771
    [75] Maina J W, Schutz J A, Grundy L, et al. Inorganic nanoparticles/metal organic framework hybrid membrane reactors for efficient photocatalytic conversion of CO2. ACS Appl Mater Interfaces, 2017, 9(40):35010
    [76] Lin S Y, Pineda-Galvan Y, Maza W A, et al. Electrochemical water oxidation by a catalyst-modified metal-organic framework thin film. Chem Sus Chem, 2017, 10(3):514
    [77] Gong Y N, Ouyang T, He C T, et al. Photoinduced water oxidation by an organic ligand incorporated into the framework of a stable metal-organic framework. Chem Sci, 2016, 7(2):1070
    [78] Usov P M, Ahrenholtz S R, Maza W A, et al. Cooperative electrochemical water oxidation by Zr nodes and Ni-porphyrin linkers of a PCN-224 MOF thin film. J Mater Chem A, 2016, 4(43):16818
    [79] Johnson B A, Bhunia A, Ott S. Electrocatalytic water oxidation by a molecular catalyst incorporated into a metal-organic framework thin film. Dalton Trans, 2017, 46(5):1382
    [80] Vaddipalli S R, Sanivarapu S R, Vengatesan S, et al. Heterostructured Au NPs/CdS/LaBTC MOFs photoanode for efficient photoelectrochemical water splitting:Stability enhancement via CdSe QDs to 2D-CdS nanosheets transformation. ACS Appl Mater Interfaces, 2016, 8(35):23049
    [81] Zhao S L, Wang Y, Dong J C, et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nature Energy, 2016, 1:16184
    [83] Ye L, Liu J X, Gao Y, et al. Highly oriented MOF thin filmbased electrocatalytic device for the reduction of CO2 to CO exhibiting high faradaic efficiency. J Mater Chem A, 2016, 4(40):15320
    [84] Kornienko N, Zhao Y B, Kley C S, et al. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J Am Chem Soc, 2015, 137(44):14129
    [85] Allendorf M D, Houk R J, Andruszkiewicz L, et al. Stress-induced chemical detection using flexible metal-organic frameworks. J Am Chem Soc, 2008, 130(44):14404
    [86] Hromadka J, Tokay B, Correia R, et al. Carbon dioxide measurements using long period grating optical fibre sensor coated with metal organic framework HKUST-1. Sens Actuators B, 2018, 255:2483
    [87] Shu Y, Yan Y, Chen J Y, et al. Ni and NiO nanoparticles decorated metal-organic framework nanosheets:Facile synthesis and high-performance nonenzymatic glucose detection in human serum. ACS Appl Mater Interfaces, 2017, 9(27):22342
    [88] Liu J, Sun F X, Zhang F, et al. In situ growth of continuous thin metal-organic framework film for capacitive humidity sensing. J Mater Chem, 2011, 21(11):3775
    [89] Aubrey M L, Long J R. A dual-ion battery cathode via oxidative insertion of anions in a metal-organic framework. J Am Chem Soc, 2015, 137(42):13594
    [90] Jiao Y, Pei J, Yan C S, et al. Layered nickel metal-organic framework for high performance alkaline battery-supercapacitor hybrid devices. J Mater Chem A, 2016, 4(34):13344
    [91] Li B, Liu J, Nie Z M, et al. Metal-organic frameworks as highly active electrocatalysts for high-energy density, aqueous zinc-polyiodide redox flow batteries. Nano Lett, 2016, 16(7):4335
    [92] Lee D Y, Kim E K, Shin C Y, et al. Layer-by-layer deposition and photovoltaic property of Ru-based metal-organic frameworks. RSC Adv, 2014, 4(23):12037
    [93] Lopez H A, Dhakshinamoorthy A, Ferrer B, et al. Photochemical response of commercial MOFs:Al2(BDC)3 and its use as active material in photovoltaic devices. J Phys Chem C, 2011, 115(45):22200
    [94] Chi W S, Roh D K, Lee C S, et al. A shape-and morphologycontrolled metal organic framework template for high-efficiency solid-state dye-sensitized solar cells. J Mater Chem A, 2015, 3(43):21599
    [95] Liu J X, Zhou W C, Liu J X, et al. A new class of epitaxial porphyrin metal-organic framework thin films with extremely high photocarrier generation efficiency:promising materials for all-solid-state solar cells. J Mater Chem A, 2016, 4(33):12739
    [96] Deng H X, Grunder S, Cordova K E, et al. Large-pore apertures in a series of metal-organic frameworks. Science, 2012, 336(6084):1018
    [97] Park H J, So M C, Gosztola D, et al. Layer-by-layer assembled films of perylene diimide-and squaraine-containing metal-organic framework-like materials:Solar energy capture and directional energy transfer. ACS Appl Mater Interfaces, 2016, 8(38):24983
    [98] Sheberla D, Bachman J C, Elias J S, et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater, 2017, 16(2):220
    [99] Zhang M, Ma L, Wang L L, et al. Insights into the use of metalorganic framework as high-performance anticorrosion coatings. ACS Appl Mater Interfaces, 2018, 10(3):2259
    [100] Talin A A, Centrone A, Ford A C, et al. Tunable electrical conductivity in metal-organic framework thin-film devices. Science, 2013:1246738
    [101] Erickson K J, Leonard F, Stavila V, et al. Thin film thermoelectric metal-organic framework with high seebeck coefficient and low thermal conductivity. Adv Mater, 2015, 27(22):3453
    [102] Jain P, Stroppa A, Nabok D, et al. Switchable electric polarization and ferroelectric domains in a metal-organic-framework. Npj Quantum Mater, 2016, 1(1):16012
    [103] Wang Z B, Nminibapiel D, Shrestha P, et al. Resistive switching nanodevices based on metal-organic frameworks. Chem Nano Mat, 2016, 2(1):67
    [104] Gu Z G, Chen S C, Fu W Q, et al. Epitaxial growth of MOF thin film for modifying the dielectric layer in organic field-effect transistors. ACS Appl Mater Interfaces, 2017, 9(8):7259
    [105] Shekhah O, Wang H, Zacher D, et al. Growth mechanism of metal-organic frameworks:insights into the nucleation by employing a step-by-step route. Angew Chem Int Ed, 2009, 48(27):5038
    [106] Xu G, Yamada T, Otsubo K, et al. Facile "modular assembly" for fast construction of a highly oriented crystalline MOF nanofilm. J Am Chem Soc, 2012, 134(40):16524
    [107] Ohnsorg M L, Beaudoin C K, Anderson M E. Fundamentals of MOF thin film growth via liquid-phase epitaxy:investigating the initiation of deposition and the influence of temperature. Langmuir, 2015, 31(22):6114
    [108] Yu X J, Zhuang J L, Scherr J, et al. Minimization of surface energies and ripening outcompete template effects in the surface growth of metal-organic frameworks. Angew Chem Int Ed, 2016, 55(29):8348
    [109] Hod I, Sampson M D, Deria P, et al. Fe-porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal, 2015, 5(11):6302
    [110] Dragasser A, Shekhah O, Zybaylo O, et al. Redox mediation enabled by immobilised centres in the pores of a metal-organic framework grown by liquid phase epitaxy. Chem Commun, 2012, 48(5):663
    [111] Yaghi O M, O'Keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials. Nature, 2003, 423(6941):705
  • 加载中
计量
  • 文章访问数:  538
  • HTML全文浏览量:  225
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-13

目录

    /

    返回文章
    返回