• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SBA-15脱除超细颗粒的机制研究

邢奕 崔永康 苏伟 尹丽鲲 刘应书 李子宜 路培

邢奕, 崔永康, 苏伟, 尹丽鲲, 刘应书, 李子宜, 路培. SBA-15脱除超细颗粒的机制研究[J]. 工程科学学报, 2020, 42(3): 313-320. doi: 10.13374/j.issn2095-9389.2019.04.01.004
引用本文: 邢奕, 崔永康, 苏伟, 尹丽鲲, 刘应书, 李子宜, 路培. SBA-15脱除超细颗粒的机制研究[J]. 工程科学学报, 2020, 42(3): 313-320. doi: 10.13374/j.issn2095-9389.2019.04.01.004
XING Yi, CUI Yong-kang, SU Wei, YIN Li-kun, LIU Ying-shu, LI Zi-yi, LU Pei. Study of the mechanism of removing ultrafine particles using SBA-15[J]. Chinese Journal of Engineering, 2020, 42(3): 313-320. doi: 10.13374/j.issn2095-9389.2019.04.01.004
Citation: XING Yi, CUI Yong-kang, SU Wei, YIN Li-kun, LIU Ying-shu, LI Zi-yi, LU Pei. Study of the mechanism of removing ultrafine particles using SBA-15[J]. Chinese Journal of Engineering, 2020, 42(3): 313-320. doi: 10.13374/j.issn2095-9389.2019.04.01.004

SBA-15脱除超细颗粒的机制研究

doi: 10.13374/j.issn2095-9389.2019.04.01.004
基金项目: 国家重点研发计划资助项目(2017YFC0210301);国家青年科学基金资助项目(21707007)
详细信息
    通讯作者:

    Email:suwei3007@163.com

  • 中图分类号: X513

Study of the mechanism of removing ultrafine particles using SBA-15

More Information
  • 摘要: 利用扫描电迁移率颗粒物粒径谱仪(SMPS),针对不同孔径的介孔材料SBA-15,探索对UFPs(2.5~25 nm)的去除效率及脱除机理,以期为介孔材料过滤脱除UFPs在钢铁工业颗粒物超低排放控制的应用提供理论基础。基于实验结果及表征分析得知:UFPs入孔效应使大孔径介孔过滤介质效率更佳;介孔材料孔径端部内外表面存在大量UFPs亲和位点,提高端部复杂程度有利于提升材料过滤性能;氮气的有无对UFPs去除结果基本没有影响;介孔的存在使UFPs扩散效应更强,颗粒入孔使扩散系数增加,故UFPs在介孔材料实际扩散结果与传统扩散模式理论值(m=−2/3)不同。
  • 图  1  超细颗粒过滤实验系统流程示意图

    Figure  1.  Schematic diagram of the experimental setup for particle removal efficiency measurement system

    图  2  多分散性UFPs的粒径分布图

    Figure  2.  Particle size distribution of polydisperse UFPs

    图  3  UFPs总脱除效率随时间变化趋势图

    Figure  3.  Total removal efficiency of UFPs as a function of time

    图  4  三种孔径SBA-15对UFPs的单粒径脱除效率曲线

    Figure  4.  Removal efficiency curves of three pore sizes of SBA-15 for UFPs with a single particle size

    图  5  不同孔径下原始SBA-15的透射电镜表征结果

    Figure  5.  TEM characterization of the original SBA-15 with different pore sizes

    图  6  不同孔径下过滤颗粒物后SBA-15的透射电镜表征结果

    Figure  6.  TEM characterization of SBA-15 after filtration of particulate matter with different pore sizes

    图  7  不同孔径SBA-15在有无N2条件下对UFPs脱除总效率

    Figure  7.  Total removal efficiency of SBA-15 for UFPs with or without N2 with different pore sizes

    图  8  不同风速下SBA-15-10.8对UFPs的单粒径脱除效率

    Figure  8.  Removal efficiency of SBA-15-10.8 for UFPs with the same particle size under different flow velocity

    图  9  不同风速下SBA-15-10.8对3~8 nm颗粒的单球效率(ηd)与Peclet数(Pe)的拟合曲线

    Figure  9.  Fitting curves of single sphere efficiency (ηd) and Peclet number (Pe) for 3–8 nm particles by SBA-15-10.8 under different flow velocity

    表  1  过滤颗粒物前后SBA-15的BET表征结果

    Table  1.   BET characterization of SBA-15 before and after filtration of particulate matter

    MaterialsPore width before filtering/nmPore width after filtering/nmPore volume before filtering/(cm3·g−1)Pore volume after filtering/(cm3·g−1)Pore volume reduction/(cm3·g−1)
    SBA-15-5.84~64~60.61220.47690.1353
    SBA-15-10.88~128~121.19640.91000.2864
    SBA-15-17.714~2514~252.00411.52610.4780
    下载: 导出CSV
  • [1] 段文娇, 郎建垒, 程水源, 等. 京津冀地区钢铁行业污染物排放清单及对PM2.5影响. 环境科学, 2018, 39(4):1445

    Duan W J, Lang J L, Cheng S Y, et al. Air pollutant emission inventory from iron and steel industry in the Beijing-Tianjin-Hebei region and is impact on PM2.5. Environ Sci, 2018, 39(4): 1445
    [2] 仇丽萍. 城市大气污染物排放清单建立及评估——以南京市为例[学位论文]. 南京: 南京大学, 2015

    Qiu L P. Development and Assessment of the City-Scale Emission Inventory of Anthropogenic Air Pollutants: A Case Study of Nanjing[Dissertation]. Nanjing: Nanjing University, 2015
    [3] 孙在, 谢小芳, 杨文俊, 等. 煤燃烧超细颗粒物的粒径分布及数浓度排放特征试验. 环境科学学报, 2014, 34(12):3126

    Sun Z, Xie X F, Yang W J, et al. Size distribution and number emission characteristics of ultrafine particles from coal combustion. Acta Sci Circum, 2014, 34(12): 3126
    [4] 张茹, 汤莉莉, 许汉冰, 等. 冬季南京城市大气气溶胶吸湿性观测研究. 环境科学学报, 2018, 38(1):32

    Zhang R, Tang L L, Xu H B, et al. Hygroscopic properties of urban aerosol in Nanjing during wintertime. Acta Sci Circum, 2018, 38(1): 32
    [5] Yan P, Pan X L, Tang J, et al. Hygroscopic growth of aerosol scattering coefficient: a comparative analysis between urban and suburban sites at winter in Beijing. Particuology, 2009, 7(1): 52 doi: 10.1016/j.partic.2008.11.009
    [6] 何镓祺, 于兴娜, 朱彬, 等. 南京冬季气溶胶消光特性及霾天气低能见度特征. 中国环境科学, 2016, 36(6):1645 doi: 10.3969/j.issn.1000-6923.2016.06.008

    He J Q, Yu X N, Zhu B, et al. Characteristics of aerosol extinction and low visibility in haze weather in winter of Nanjing. China Environ Sci, 2016, 36(6): 1645 doi: 10.3969/j.issn.1000-6923.2016.06.008
    [7] 杨复沫, 欧阳文娟, 王欢博, 等. 大气颗粒物对能见度影响的研究进展. 工程研究-跨学科视野中的工程, 2013, 5(3):252 doi: 10.3724/SP.J.1224.2013.00252

    Yang F M, Ouyang W J, Wang H B, et al. Recent progress in research on impact of atmospheric particulate matters on visibility. J Eng Studies, 2013, 5(3): 252 doi: 10.3724/SP.J.1224.2013.00252
    [8] 沈雷, 顾芳, 张加宏, 等. 相对湿度对大气气溶胶消光系数的影响. 光散射学报, 2017, 29(3):251

    Shen L, Gu F, Zhang J H, et al. The effect of relative humidity on the extinction coefficient of aerosols. J Light Scatt, 2017, 29(3): 251
    [9] 范晓慧, 甘敏, 季志云, 等. 烧结烟气超细颗粒物排放规律及其物化特性. 烧结球团, 2016, 41(3):42

    Fan X H, Gan M, Ji Z Y, et al. The rules of super fine particulate emission from sintering flue gas and its physicochemical properties. Sintering Pelletizing, 2016, 41(3): 42
    [10] Wang C S, Otani Y. Removal of nanoparticles from gas streams by fibrous filters: a review. Ind Eng Chem Res, 2013, 52(1): 5 doi: 10.1021/ie300574m
    [11] Kim C, Pui D Y H. Experimental study on the filtration efficiency of activated carbons for 3-30 nm particles. Carbon, 2015, 93: 226 doi: 10.1016/j.carbon.2015.05.048
    [12] Givehchi R, Li Q H, Tan Z C. The effect of electrostatic forces on filtration efficiency of granular filters. Powder Technol, 2015, 277: 135 doi: 10.1016/j.powtec.2015.01.074
    [13] Innocentini M D D M, Coury J R, Fukushima M, et al. High-efficiency aerosol filters based on silicon carbide foams coated with ceramic nanowires. Sep Purif Technol, 2015, 152: 180 doi: 10.1016/j.seppur.2015.08.027
    [14] 邢奕, 王骢, 路培, 等. 有序介孔材料过滤脱除纳米颗粒物. 环境科学, 2016, 37(12):4538

    Xing Y, Wang C, Lu P, et al. Removing nano particles by filtration using materials with ordered mesoporous structure. Environ Sci, 2016, 37(12): 4538
    [15] Lee K W, Gieseke J A. Collection of aerosol particles by packed beds. Environ Sci Technol, 1979, 13(4): 466 doi: 10.1021/es60152a013
    [16] Xing Y, Yu H, Lu P, et al. Experimental research on purifying ultrafine nanoparticle by SBA-15 and its filtration mechanism. Powder Technol, 2018, 330: 32 doi: 10.1016/j.powtec.2018.02.031
    [17] Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev, 2009, 38(5): 1477 doi: 10.1039/b802426j
    [18] 张蕾, 姬亚芹, 李越洋, 等. 钢铁冶炼尘两种采样方法PM2.5中元素的比较研究. 中国环境科学, 2018, 38(12):4426 doi: 10.3969/j.issn.1000-6923.2018.12.004

    Zhang L, Ji Y Q, Li Y Y, et al. A comparative study on the elements of PM2.5 in two sampling methods of steel dust. China Environ Sci, 2018, 38(12): 4426 doi: 10.3969/j.issn.1000-6923.2018.12.004
    [19] Kim C, Kang S, Pui D Y H. Removal of airborne sub-3nm particles using fibrous filters and granular activated carbons. Carbon, 2016, 104: 125 doi: 10.1016/j.carbon.2016.03.060
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  609
  • HTML全文浏览量:  816
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-01
  • 刊出日期:  2020-03-01

目录

    /

    返回文章
    返回