• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

临床外科手术中骨切削技术的研究现状及进展

王震 宋晓菲 陈彤云

王震, 宋晓菲, 陈彤云. 临床外科手术中骨切削技术的研究现状及进展[J]. 工程科学学报, 2019, 41(6): 709-718. doi: 10.13374/j.issn2095-9389.2019.06.002
引用本文: 王震, 宋晓菲, 陈彤云. 临床外科手术中骨切削技术的研究现状及进展[J]. 工程科学学报, 2019, 41(6): 709-718. doi: 10.13374/j.issn2095-9389.2019.06.002
WANG Zhen, SONG Xiao-fei, CHEN Tong-yun. A review of bone cutting in surgery[J]. Chinese Journal of Engineering, 2019, 41(6): 709-718. doi: 10.13374/j.issn2095-9389.2019.06.002
Citation: WANG Zhen, SONG Xiao-fei, CHEN Tong-yun. A review of bone cutting in surgery[J]. Chinese Journal of Engineering, 2019, 41(6): 709-718. doi: 10.13374/j.issn2095-9389.2019.06.002

临床外科手术中骨切削技术的研究现状及进展

doi: 10.13374/j.issn2095-9389.2019.06.002
基金项目: 

天津市自然科学基金资助项目(18JCYBJC19700)

国家自然科学基金资助项目(51875404)

详细信息
  • 中图分类号: TG501.1

A review of bone cutting in surgery

  • 摘要: 对骨切削研究中的骨切削数值仿真本构模型、骨切削手术工艺及机理等方面进行了综述,着重介绍了切削参数对骨切削的影响、骨切削刀具设计等,并对医学领域新兴的超声骨切削技术进行了介绍和分析.最后得出应从以下方面完善骨切削研究:(1)骨切削数值仿真的本构模型有待开发;(2)构建系统的骨材料切削理论以解释骨材料切屑形态的切削机理;(3)骨材料切削刀具的开发需要进一步深化;(4)超声骨切削由于安全性高、损伤小、愈合快的特点将成为未来临床骨切割操作的发展方向和趋势.
  • [1] Marco M, Rodríguez-Millán M, Santiuste C, et al. A review on recent advances in numerical modelling of bone cutting. J Mech Behav Biomed Mater, 2015, 44:179
    [2] Takabi B, Tai B L. A review of cutting mechanics and modeling techniques for biological materials. Med Eng Phys, 2017, 45:1
    [3] Birkenfeld F, Erika Becker M, Harder S, et al. Increased intraosseous temperature caused by ultrasonic devices during bone surgery and the influences of working pressure and cooling irrigation. Int J Oral Max Impl, 2012, 27(6):1382
    [4] Manerrnann W J, Sampathkumar P, Thompson R L. Sternal wound infections. Best Pract Res Clin Anaesthesiol, 2008, 22(3):423
    [5] Wiggins K L, Malkin S. Orthogonal machining of bone. J Biomech Eng, 1978, 100(3):122
    [6] Jacobs C H, Pope M H, Berry J T, et al. A study of the bone machining process-orthogonal cutting. J Biomech, 1974, 7(2):131
    [7] Krause W R. Orthogonal bone cutting:saw design and operating characteristics. J Biomech Eng, 1987, 109(3):263
    [8] Sui J B, Sugita N, Ishii K, et al. Force analysis of orthogonal cutting of bovine cortical bone. Mach Sci Technol, 2013, 17(4):637
    [9] Alam K, Mitrofanov A V, Silberschmidt V V. Finite element analysis of forces of plane cutting of cortical bone. Comput Mater Sci, 2009, 46(3):738
    [10] Alam K, Mitrofanov A V, Silberschmidt V V. Thermal analysis of orthogonal cutting of cortical bone using finite element simulations. Int J Exp Comput Biomech, 2010, 1(3):236
    [11] Childs T H C, Arola D. Machining of cortical bone:Simulations of chip formation mechanics using metal machining models. Mach Sci Technol, 2011, 15(2):206
    [12] Santiuste C, Rodríguez-Millán M, Giner E, et al. The influence of anisotropy in numerical modeling of orthogonal cutting of cortical bone. Compos Struct, 2014, 116:423
    [13] Li S, Zahedi A, Silberschmidt V, et al. Penetration of cutting tool into cortical bone:experimental and numerical investigation of anisotropic mechanical behaviour. J Biomech, 2014, 47:1117
    [14] Feldmann A, Ganser P, Nolte L, et al. Orthogonal cutting of cortical bone:Temperature elevation and fracture toughness. Int J Mach Tools Manuf, 2017, 118-119:1
    [16] Liao Z R, Axinte D A. On chip formation mechanism in orthogonal cutting of bone. Int J Mach Tools Manuf, 2016, 102:41
    [20] Augustin G, Davila S, Mihoci K, et al. Thermal osteonecrosis and bone drilling parameters revisited. Arch Orthop Trauma Surg, 2008, 128(1):71
    [21] Karaca F, Aksakal B, Kom M. Influence of orthopaedic drilling parameters on temperature and histopathology of bovine tibia:an in vitro study. Med Eng Phys, 2011, 33(10):1221
    [22] Sezek S, Aksakal B, Karaca F. Influence of drill parameters on bone temperature and necrosis:a FEM modelling and in vitro experiments. Comput Mater Sci, 2012, 60:13
    [23] Lee J E, Rabin Y, Ozdoganlar O B. A new thermal model for bone drilling with applications to orthopaedic surgery. Med Eng Phys, 2011, 33(10):1234
    [24] Pandey R K, Panda S S. Drilling of bone:a comprehensive review. J Clin Orthop Trauma, 2013, 4(1):15
    [25] Augustin G, Zigman T, Davila S, et al. Cortical bone drilling and thermal osteonecrosis. Clin Biomech, 2012, 27(4):313
    [26] Hillery M T, Shuaib I. Temperature effects in drilling of human and bovine bone. J Mater Process Technol, 1999, 92-93:302
    [27] Karmani S, Lam F. The design and function of surgical drills and K-wires. Curr Orthop, 2004, 18(6):484
    [28] Bertollo N, Milne H R M, Ellis L P, et al. A comparison of the thermal properties of 2-and 3-fluted drills and the effects on bone cell viability and screw pull-out strength in an ovine model. Clin Biomech, 2010, 25(6):613
    [29] Lee J E, Ozdoganlar B, Rabin Y. An experimental investigation on thermal exposure during bone drilling. Med Eng Phys, 2012, 34(10):1510
    [30] Udiljak T, Ciglar D, Skoric S. Investigation into bone drilling and thermal bone necrosis. Adv Prod Eng Manage, 2007, 2(3):103
    [31] Karmani S. The thermal properties of bone and the effects of surgical intervention. Curr Orthop, 2006, 20(1):52
    [32] Lughmani W A, Bouazza-Marouf K, Ashcroft I. Finite element modeling and experimentation of bone drilling forces. J Phys Conf Ser, 2013, 451:012034
    [33] Tu Y K, Chen L W, Ciou J S, et al. Finite element simulations of bone temperature rise during bone drilling based on a bone analog. J Med Biol Eng, 2013, 33(3):269
    [34] Alam K, Khan M, Silberschmidt V V. 3D finite-element modelling of drilling cortical bone:temperature analysis. J Med Biol Eng, 2014, 34(6):618
    [35] Xu L L, Wang C Y, Jiang M, et al. Drilling force and temperature of bone under dry and physiological drilling conditions. Chin J Mech Eng, 2014, 27(6):1240
    [36] Li X S, Zhu W, Wang J Q, et al. Optimization of bone drilling process based on finite element analysis. Appl Therm Eng, 2016, 108:211
    [37] Sui J B, Sugita N, Ishii K, et al. Mechanistic modeling of bonedrilling process with experimental validation. J Mater Process Technol, 2014, 214(4):1018
    [38] Sui J B, Sugita N, Mitsuishi M. Thermal modeling of temperature rise for bone drilling with experimental validation. J Manuf Sci Eng, 2015, 137(6):061008
    [39] Tai B L, Palmisano A C, Belmont B, et al. Numerical evaluation of sequential bone drilling strategies based on thermal damage. Med Eng Phys, 2015, 37(9):855
    [40] Tai B L, Zhang L H, Wang A, et al. Neurosurgical bone grinding temperature monitoring. Procedia CIRP, 2013, 5:226
    [41] Zhang L H, Tai B L, Wang G J, et al. Thermal model to investigate the temperature in bone grinding for skull base neurosurgery. Med Eng Phys, 2013, 35(10):1391
    [43] Shin H C, Yoon Y S. Bone temperature estimation during orthopaedic round bur milling operations. J Biomech, 2006, 39(1):33
    [44] Sugita N, Osa T, Mitsuishi M. Analysis and estimation of cutting-temperature distribution during end milling in relation to orthopedic surgery. Med Eng Phys, 2009, 31(1):101
    [45] Sugita N, Ishii K, Sui J B, et al. Multi-grooved cutting tool to reduce cutting force and temperature during bone machining. CIRP Ann, 2014, 63(1):101
    [46] Liao Z R, Axinte D A, Gao D. A novel cutting tool design to avoid surface damage in bone machining. Int J Mach Tools Manuf, 2017, 116:52
    [47] Mason T J. Therapeutic ultrasound an overview. Ultrason Sonochem, 2011, 18(4):847
    [48] Crum L, Bailey M, Hwang J H, et al. Therapeutic ultrasound:Recent trends and future perspectives. Phys Procedia, 2010, 3(1):25
    [49] Zhang Y, Wang C Y, Zhou S B, et al. A comparison review on orthopedic surgery using piezosurgery and conventional tools. Procedia CIRP, 2017, 65:99
    [52] Khambay B S, Walmsley A D. Investigations into the use of an ultrasonic chisel to cut bone, Part 1:forces applied by clinicians. J Dent, 2000, 28(1):31
    [53] Khambay B S, Walmsley A D. Investigations into the use of an ultrasonic chisel to cut bone, Part 2:cutting ability. J Dent, 2000, 28(1):39
    [54] Alam K. Experimental and Numerical Analysis of Conventional and Ultrasonically-assisted Cutting of Bone[Dissertation]. Loughborough:Loughborough University, 2009
    [55] Alam K, Khan M, Silberschmidt V V. Analysis of forces in conventional and ultrasonically assisted plane cutting of cortical bone. Proc Inst Mech Eng Part H J Eng Med, 2013, 227(6):636
    [56] Alam K, Silberschmidt V V. Analysis of temperature in conventional and ultrasonically-assisted drilling of cortical bone with infrared thermography. Technol Health Care, 2014, 22(2):243
    [57] Sugita N, Shu L M, Shimada T, et al. Novel surgical machining via an impact cutting method based on fracture analysis with a discontinuum bone model. CIRP Ann, 2017, 66(1):65
    [59] Chen Y, Zhou Z Y, Zhang G H. Effects of different tissue loads on high power ultrasonic surgery scalpel. Ultrasound Med Biol, 2006, 32(3):415
    [61] Wang Y, Cao M, Zhao X R, et al. Experimental investigations and finite element simulation of cutting heat in vibrational and conventional drilling of cortical bone. Med Eng Phys, 2014, 36(11):1408
  • 加载中
计量
  • 文章访问数:  385
  • HTML全文浏览量:  93
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-08

目录

    /

    返回文章
    返回