• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高耐蚀锌铝镁镀层研究现状

杜昕 张满仓 段生朝 徐荣嬛 邹明 董世文 郭汉杰 郭靖

杜昕, 张满仓, 段生朝, 徐荣嬛, 邹明, 董世文, 郭汉杰, 郭靖. 高耐蚀锌铝镁镀层研究现状[J]. 工程科学学报, 2019, 41(7): 847-856. doi: 10.13374/j.issn2095-9389.2019.07.002
引用本文: 杜昕, 张满仓, 段生朝, 徐荣嬛, 邹明, 董世文, 郭汉杰, 郭靖. 高耐蚀锌铝镁镀层研究现状[J]. 工程科学学报, 2019, 41(7): 847-856. doi: 10.13374/j.issn2095-9389.2019.07.002
DU Xin, ZHANG Man-cang, DUAN Sheng-chao, XU Rong-huan, ZOU Ming, DONG Shi-wen, GUO Han-jie, GUO Jing. Research status of high corrosion-resistant Zn-Al-Mg coating[J]. Chinese Journal of Engineering, 2019, 41(7): 847-856. doi: 10.13374/j.issn2095-9389.2019.07.002
Citation: DU Xin, ZHANG Man-cang, DUAN Sheng-chao, XU Rong-huan, ZOU Ming, DONG Shi-wen, GUO Han-jie, GUO Jing. Research status of high corrosion-resistant Zn-Al-Mg coating[J]. Chinese Journal of Engineering, 2019, 41(7): 847-856. doi: 10.13374/j.issn2095-9389.2019.07.002

高耐蚀锌铝镁镀层研究现状

doi: 10.13374/j.issn2095-9389.2019.07.002
基金项目: 

国家自然科学基金联合基金资助项目(U1560203)

国家自然科学基金资助项目(51274031)

详细信息
  • 中图分类号: TG174.44

Research status of high corrosion-resistant Zn-Al-Mg coating

  • 摘要: 从锌铝镁镀层的熔池界面反应、镀层组织、表面和切边腐蚀机理、腐蚀产物类型变化等方面,对高耐蚀锌铝镁镀层的研究进展进行了详细分析. 根据Al成分含量的不同,将商用及实验室锌铝镁镀层分为"低铝"、"中铝"和"高铝"锌铝镁三种类型:不同类型的锌铝镁镀层的金属间化合物层生长动力学存在差异,为了控制镀层厚度,应合理控制浸镀时间、温度与熔池成分;凝固组织也存在差异,"低铝"与"中铝"会析出Al或Zn初晶、Zn/MgZn2二元共晶组织、Zn/MgZn2/Al三元共晶组织,"高铝"会产生富Al枝晶、枝晶间富Zn相、Mg2Si相、MgZn2相,不产生共晶组织;发生表面腐蚀时,"低铝"与"中铝"中MgZn2相先电离,并生成碱性锌盐、双层氢氧化物等致密的腐蚀产物,抑制腐蚀;发生切边腐蚀时,锌铝镁会出现自修复现象,在切边钢基或镀层破损处形成碱性锌盐,保护基体.
  • [1] Marder A R. The metallurgy of zinc-coated steel. Prog Mater Sci, 2000, 45(3):191
    [4] Li K L, Liu Y, Tu H, et al. Effect of Si on the growth of Fe-Al intermetallic layer in Zn-11%Al-3%Mg coating. Surf Coat Technol, 2016, 306:390
    [5] Wang J H, Ma K, Peng H P, et al. Study on Fe-Al layers of Fe/(Zn-11% Al-3% Mg-0.2% Si) solid-liquid diffusion couples. Mater Manuf Processes, 2017, 32(11):1290
    [6] Yao C Z, Tay S L, Zhu T P, et al. Effects of Mg content on microstructure and electrochemical properties of Zn-Al-Mg alloys. J Alloys Compd, 2015, 645:131
    [7] Wang Y B, Zeng J M. Effects of manganese addition on microstructures and corrosion behavior of hot-dip zinc coatings of hot-rolled steels. Surf Coat Technol, 2014, 245:55
    [8] Pistofidis N, Vourlias G, Konidaris S, et al. Microstructure of zinc hot-dip galvanized coatings used for corrosion protection. Mater Lett, 2006, 60(6):786
    [9] Duchoslav J, Arndt M, Steinberger R, et al. Nanoscopic view on the initial stages of corrosion of hot dip galvanized Zn-Mg-Al coatings. Corros Sci, 2014, 83:327
    [10] Schürz S, Luckeneder G H, Fleischanderl M, et al. Chemistry of corrosion products on Zn-Al-Mg alloy coated steel. Corros Sci, 2010, 52(10):3271
    [11] Volovitch P, Allely C, Ogle K. Understanding corrosion via corrosion product characterization:I. Case study of the role of Mg alloying in Zn-Mg coating on steel.Corros Sci, 2009, 51(6):1251
    [12] Volovitch P, Vu T N, Allély C, et al. Understanding corrosion via corrosion product characterization:Ⅱ. Role of alloying elements in improving the corrosion resistance of Zn-Al-Mg coatings on steel. Corros Sci, 2011, 53(8):2437
    [14] Ueda K, Takahashi A, Kubo Y. Investigation of corrosion resistance of pre-painted Zn-11% Al-3% Mg-0.2% Si alloy coated steel sheet through outdoor exposure test in Okinawa. La Metall Ital, 2012(2):13
    [15] Thébault F, Vuillemin B, Oltra R, et al. Investigation of self-healing mechanism on galvanized steels cut edges by coupling SVET and numerical modeling. Electrochim Acta, 2008, 53(16):5226
    [19] Hashimoto S, Nakazawa M. Zn-Al-Mg Coated Steel Sheet and Method of Producing Zn-Al-Mg Coated Steel Sheet:US Patent, 15/554,451. 2018-8-23
    [20] Su X P, Zhou J, Wang J H, et al. Thermodynamic analysis and experimental study on the oxidation of the Zn-Al-Mg coating baths. Appl Surf Sci, 2017, 396:154
    [22] Giorgi M L, Guillot J B, Nicolle R. Theoretical model of the interfacial reactions between solid iron and liquid zinc-aluminium alloy. J Mater Sci, 2005, 40(9-10):2263
    [24] Liang L, Liu Y L, Liu Y, et al. Effect of Mg and temperature on Fe-Al alloy layer in Fe/(Zn-6% Al-x% Mg) solid-liquid diffusion couples. Surf Rev Lett, 2017, 24(Suppl 1):1850010
    [26] Li S W, Gao B, Tu G F, et al.Effects of magnesium on the microstructure and corrosion resistance of Zn-55Al-1.6Si coating. Constr Build Mater, 2014, 71:124
    [27] Azevedo M S, Allély C, Ogle K, et al. Corrosion mechanisms of Zn (Mg, Al) coated steel:2. the effect of Mg and Al alloying on the formation and properties of corrosion products in different electrolytes. Corros Sci, 2015, 90:482
    [28] Honda K, Yamada W, Ushioda K. Solidification structure of the coating layer on hot-dip Zn-11% Al-3% Mg-0.2% Si-coated steel sheet. Mater Trans, 2008, 49(6):1395
    [29] Yamada W, Tanaka K, Ushioda K, et al. Solidification structure of coating layer in hot-dip Zn-11% Al-3% Mg-0.2% Si-coated steel sheet and phase diagram of the system. Nippon Steel Tech Rep, 2013, 102:37
    [30] De Bruycker E, Zermout Z, De Cooman B C. Zn-Al-Mg coatings:thermodynamic analysis and microstructure related properties. Mater Sci Forum, 2007, 539-5423:1276
    [31] Azevedo M S, Allély C, Ogle K, et al. Corrosion mechanisms of Zn (Mg, Al) coated steel in accelerated tests and natural exposure:1. the role of electrolyte composition in the nature of corrosion products and relative corrosion rate. Corros Sci, 2015, 90:472
    [33] Oh M S, Kim S H, Kim J S, et al. Surface and cut-edge corrosion behavior of Zn-Mg-Al alloy-coated steel sheets as a function of the alloy coating microstructure. Met Mater Int, 2016, 22(1):26
    [34] Krieg R, Rohwerder M, Evers S, et al. Cathodic self-healing at cut-edges:the effect of Zn2+ and Mg2+ ions. Corros Sci, 2012, 65:119
  • 加载中
计量
  • 文章访问数:  546
  • HTML全文浏览量:  209
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-09

目录

    /

    返回文章
    返回