• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

残余应力对金属材料局部腐蚀行为的影响

陈恒 卢琳

陈恒, 卢琳. 残余应力对金属材料局部腐蚀行为的影响[J]. 工程科学学报, 2019, 41(7): 929-939. doi: 10.13374/j.issn2095-9389.2019.07.012
引用本文: 陈恒, 卢琳. 残余应力对金属材料局部腐蚀行为的影响[J]. 工程科学学报, 2019, 41(7): 929-939. doi: 10.13374/j.issn2095-9389.2019.07.012
CHEN Heng, LU Lin. Effect of residual stress on localized corrosion behavior of metallic materials[J]. Chinese Journal of Engineering, 2019, 41(7): 929-939. doi: 10.13374/j.issn2095-9389.2019.07.012
Citation: CHEN Heng, LU Lin. Effect of residual stress on localized corrosion behavior of metallic materials[J]. Chinese Journal of Engineering, 2019, 41(7): 929-939. doi: 10.13374/j.issn2095-9389.2019.07.012

残余应力对金属材料局部腐蚀行为的影响

doi: 10.13374/j.issn2095-9389.2019.07.012
基金项目: 

国家重点研发计划资助项目(2018YFB0605502)

国家自然科学基金联合基金资助项目(U1560104)

详细信息
  • 中图分类号: TG172.9

Effect of residual stress on localized corrosion behavior of metallic materials

  • 摘要: 基于残余应力测试新方法与先进电化学测试技术的进展,围绕残余应力类型和大小对金属材料点蚀以及应力腐蚀行为的作用机理进行了总结和归纳. 研究发现,尽管残余压应力对腐蚀行为的抑制作用得到了大量实验的证实,但是在不同条件下其作用方式以及机理不尽相同,并且与材料的结构特点以及腐蚀产物等密切相关. 同时,残余拉应力的作用尚不明确,受到材料类型和其他因素耦合的严重影响. 另外,在某些环境下,影响腐蚀行为的关键是残余应力梯度或残余应力的某个临界值. 但是对有色金属的研究表明残余拉应力和压应力均会导致基体中位错和微应变等结构缺陷增加,进而促进点蚀敏感性,降低材料服役性能. 最后,对目前研究存在的局限进行了讨论和展望.
  • [5] Gutman E M, Solovioff G, Eliezer D. The mechanochemical behaviour of type 316L stainless steel. Corros Sci, 1996, 38(7):1141
    [7] Meng F J, Wang J Q, Han E, et al. The role of TiN inclusions in stress corrosion crack initiation for Alloy 690TT in high-temperature and high-pressure water. Corros Sci, 2010, 52(3):928
    [8] Xue H B, Cheng Y F. Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking. Corros Sci, 2011, 53(4):1201
    [9] Yan Y J, Yan Y, He Y, et al. Hydrogen-induced cracking mechanism of precipitation strengthened austenitic stainless steel weldment. Int J Hydrogen Energy, 2015, 40(5):2404
    [10] Zhang Z B, Obasi G, Morana R, et al. In-situ observation of hydrogen induced crack initiation in a nickel-based superalloy. Scripta Mater, 2017, 140:40
    [11] Shen Z, Arioka K, Lozano-Pereza S. A mechanistic study of SCC in Alloy 600 through high-resolution characterization. Corros Sci, 2018, 132:244
    [12] Zhou N, Pettersson R, Peng R L, et al. Effect of surface grinding on chloride induced SCC of 304L. Mater Sci Eng A, 2016, 658:50
    [13] Alvarez M G, Lapitz P, Ruzzante J. Analysis of acoustic emission signals generated from SCC propagation. Corros Sci, 2012, 55:5
    [14] Masuda H. SKFM observation of SCC on SUS304 stainless steel. Corros Sci, 2007, 49(1):120
    [15] Vignal V, Mary N, Oltra R, et al. A mechanical-electrochemical approach for the determination of precursor sites for pitting corrosion at the microscale. J Electrochem Soc, 2006, 153(9):B352
    [16] Oltra R, Vignal V. Recent advances in local probe techniques in corrosion research——Analysis of the role of stress on pitting sensitivity. Corros Sci, 2007, 49(1):158
    [18] Vieira L, Lucas F L C, Fisssmer S F, et al. Scratch testing for micro-and nanoscale evaluation of tribocharging in DLC films containing silver nanoparticles using AFM and KPFM techniques. Surf Coat Technol, 2014, 260:205
    [19] Marques A G, Izquierdo J, Souto R M, et al. SECM imaging of the cut edge corrosion of galvanized steel as a function of pH. Electrochim Acta, 2015, 153:238
    [20] Mouanga M, Puiggali M, Devos O. EIS and LEIS investigation of aging low carbon steel with Zn-Ni coating. Electrochim Acta, 2013, 106:82
    [21] Simões A M, Bastos A C, Ferreira M G, et al. Use of SVET and SECM to study the galvanic corrosion of an iron-zinc cell. Corros Sci, 2007, 49(2):726
    [22] Wang F Y, Mao K M, Li B. Prediction of residual stress fields from surface stress measurements. Int J Mech Sci, 2018, 140:68
    [23] Rae W, Lomas Z, Jackson M, et al. Measurements of residual stress and microstructural evolution in electron beam welded Ti-6Al-4V using multiple techniques. Mater Charact, 2017, 132:10
    [24] Kartal M E, Kiwanuka R, Dunne F P E. Determination of sub-surface stresses at inclusions in single crystal superalloy using HR-EBSD, crystal plasticity and inverse eigenstrain analysis. Int J Solids Struct, 2015, 67-68:27
    [25] Salvati E, Korsunsky A M. An analysis of macro-and micro-scale residual stresses of Type I, Ⅱ and Ⅲ using FIB-DIC micro-ring-core milling and crystal plasticity FE modelling. Int J Plast, 2017, 98:123
    [26] Withers P J. Residual stress and its role in failure. Rep Prog Phys, 2007, 70(12):2211
    [28] James M N. Residual stress influences on structural reliability. Eng Fail Anal, 2011, 18(8):1909
    [29] Withers P J, Bhadeshia H K D H. Residual stress Part 1-measurement techniques. Mater Sci Technol, 2001, 17(4):355
    [31] Groth B P, Langan S M, Haber R A, et al. Relating residual stresses to machining and finishing in silicon carbide. Ceram Int, 2016, 42(1):799
    [32] Niku-Lari A. Residual Stresses. Oxford:Pergamon Press, 1987
    [33] Huang X F, Liu Z W, Xie H M. Recent progress in residual stress measurement techniques. Acta Mech Solida Sin, 2013, 26(6):570
    [35] Bemporad E, Brisotto M, Depero L E, et al. A critical comparison between XRD and FIB residual stress measurement techniques in thin films. Thin Solid Films, 2014, 572:224
    [38] Wilkinson A J, Meaden G, Dingley D J. High-resolution elastic strain measurement from electron backscatter diffraction patterns:new levels of sensitivity. Ultramicroscopy, 2006, 106(4-5):307
    [40] Sato H, Shishido N, Kamiya S, et al. Local distribution of residual stress of Cu in LSI interconnect. Mater Lett, 2014, 136:362
    [42] Bertali G, Scenini F, Burke M G. The effect of residual stress on the preferential intergranular oxidation of Alloy 600. Corros Sci, 2016, 111:494
    [43] Wu Q, Xie D J, Si Y, et al. Simulation analysis and experimental study of milling surface residual stress of Ti-10V-2Fe-3Al. J Manuf Processes, 2018, 32:530
    [44] Kayser W, Bezold A, Broeckmann C. EBSD-based FEM simulation of residual stresses in a WC6wt.-%Co hardmetal. Int J Refract Met Hard Mater, 2018, 73:139
    [45] Soltis J. Passivity breakdown, pit initiation and propagation of pits in metallic materials-review. Corros Sci, 2015, 90:5
    [46] Wang Y J, Han X P, Liu Y, et al. Effect of residual stress on corrosion sensitivity of carbon steel studied by SECM. Chem Res Chin Univ, 2014, 30(6):1022
    [47] Li M C, Cheng Y F. Corrosion of the stressed pipe steel in carbonate-bicarbonate solution studied by scanning localized electrochemical impedance spectroscopy. Electrochim Acta, 2008, 53(6):2831
    [48] Xiong Q R, Liu D X, Zhang G J, et al. Influence of residual tensile stress on stress corrosion behavior of the base metal of X80 pipe//Proceedings of the ASME 2014 Pressure Vessels & Piping Conference. Anaheim, 2014:V001T01A073
    [50] Trethewey K R, Wenman M, Chard-Tuckey P, et al. Correlation of meso-and micro-scale hardness measurements with the pitting of plastically-deformed Type 304L stainless steel. Corros Sci, 2008, 50(4):1132
    [51] Martin F A, Bataillon C, Cousty J. In situ AFM detection of pit onset location on a 304L stainless steel. Corros Sci, 2008, 50(1):84
    [53] Vignal V, Mary N, Oltra R, et al. A mechanical-electrochemical approach for the determination of precursor sites for pitting corrosion at the microscale. J Electrochem Soc, 2006, 153(9):B352
    [54] Nguyen T T, Bolivar J, Shi Y, et al. A phase field method for modeling anodic dissolution induced stress corrosion crack propagation. Corros Sci, 2018, 132:146
    [55] Nam J Y, Seo D H, Lee S Y, et al. The effect of residual stress on the SCC using ANSYS. Procedia Eng, 2011, 10:2609
    [57] Toribio J. Role of crack-tip residual stresses in stress corrosion behavior of prestressing steel. Constr Build Mater, 1998, 12(5):283
    [58] Lu J Z, Luo K Y, Yang D K, et al. Effects of laser peening on stress corrosion cracking (SCC) of ANSI 304 austenitic stainless steel. Corros Sci, 2012, 60:145
    [59] Wei X L, Zhang C, Ling X. Effects of laser shock processing on corrosion resistance of AISI 304 stainless steel in acid chloride solution. J Alloys Compd, 2017, 723:237
    [60] Ghosh S, Rana V P S, Kain V, et al. Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel. Mater Des, 2011, 32(7):3823
    [61] Zhang W Q, Fang K W, Hu Y J, et al. Effect of machining-induced surface residual stress on initiation of stress corrosion cracking in 316 austenitic stainless steel. Corros Sci, 2016, 108:173
    [62] Van Boven G, Chen W, Rogge R. The role of residual stress in neutral pH stress corrosion cracking of pipeline steels. Part I:pitting and cracking occurrence. Acta Mater, 2007, 55(1):29
    [63] Gravier J, Vignal V, Bissey-Breton S. Influence of residual stress, surface roughness and crystallographic texture induced by machining on the corrosion behaviour of copper in salt-fog atmosphere. Corros Sci, 2012, 61:162
    [64] Pandey V, Singh J K, Chattopadhyay K, et al. Influence of ultrasonic shot peening on corrosion behavior of 7075 aluminum alloy. J Alloys Compd, 2017, 723:826
    [65] Chen T, John H, Xu J, et al. Influence of surface modifications on pitting corrosion behavior of nickel-base alloy 718. Part 1:effect of machine hammer peening. Corros Sci, 2013, 77:230
    [66] Zheng Y, Li Y, Chen J H, et al. Effects of tensile and compressive deformation on corrosion behavior of a Mg-Zn alloy. Corros Sci, 2015, 90:445
    [67] Bertali G, Scenini F, Burke M G. The effect of residual stress on the preferential intergranular oxidation of Alloy 600. Corros Sci, 2016, 111:494
  • 加载中
计量
  • 文章访问数:  542
  • HTML全文浏览量:  137
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-06

目录

    /

    返回文章
    返回