• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高洁净度齿轮钢中非金属夹杂物的检测方法

肖娜 惠卫军 张永健 赵晓丽 陈鹰

肖娜, 惠卫军, 张永健, 赵晓丽, 陈鹰. 高洁净度齿轮钢中非金属夹杂物的检测方法[J]. 工程科学学报, 2020, 42(7): 912-921. doi: 10.13374/j.issn2095-9389.2019.07.15.005
引用本文: 肖娜, 惠卫军, 张永健, 赵晓丽, 陈鹰. 高洁净度齿轮钢中非金属夹杂物的检测方法[J]. 工程科学学报, 2020, 42(7): 912-921. doi: 10.13374/j.issn2095-9389.2019.07.15.005
XIAO Na, HUI Wei-jun, ZHANG Yong-jian, ZHAO Xiao-li, CHEN Ying. Detection of nonmetallic inclusion in high-strength gear steel with high cleanliness[J]. Chinese Journal of Engineering, 2020, 42(7): 912-921. doi: 10.13374/j.issn2095-9389.2019.07.15.005
Citation: XIAO Na, HUI Wei-jun, ZHANG Yong-jian, ZHAO Xiao-li, CHEN Ying. Detection of nonmetallic inclusion in high-strength gear steel with high cleanliness[J]. Chinese Journal of Engineering, 2020, 42(7): 912-921. doi: 10.13374/j.issn2095-9389.2019.07.15.005

高洁净度齿轮钢中非金属夹杂物的检测方法

doi: 10.13374/j.issn2095-9389.2019.07.15.005
详细信息
    通讯作者:

    E-mail:wjhui@bjtu.edu.cn

  • 中图分类号: TG142.1

Detection of nonmetallic inclusion in high-strength gear steel with high cleanliness

More Information
  • 摘要: 研究了一种方便可靠的夹杂物评估方法:利用合适电化学充氢后的拉伸试样获取夹杂物并与极值统计法相结合估算不同体积钢中非金属夹杂物的最大尺寸并预测疲劳强度。研究选用工业生产的高洁净度20Cr2Ni4A齿轮钢,将淬火+低温回火态的标准拉伸试样进行电化学充氢,使拉伸断口由于氢脆现象存在一些以粗大非金属夹杂物为中心的脆性平台,从而可方便快捷地在扫描电子显微镜下对夹杂物的类型、尺寸和分布进行检测,并利用极值统计法对钢中的最大夹杂物尺寸进行评估。为了验证该方法的准确性,采用传统金相法和旋转弯曲疲劳试验对钢中非金属夹杂物进行了检测,结果表明,使用本文所提出的夹杂物评估方法预测的钢中最大夹杂物尺寸及疲劳强度与疲劳试验结果相吻合。因此,该方法有望成为预测高洁净度高强度钢中最大夹杂物尺寸及其疲劳强度的一种有效方法。
  • 图  1  标准拉伸试样形状及尺寸(单位:mm)

    Figure  1.  Dimensions and shape of the tested tensile specimen (unit: mm)

    图  2  20Cr2Ni4A钢未充氢(a,b)和不同充氢电流密度下(c,d,e,f)拉伸试样的SEM断口形貌。(a,c,e)低倍整体形貌;(b,d,f)断口及圆形脆性平台高倍形貌;(c,d) 4 mA·cm–2, 72 h;(e,f) 8 mA·cm–2, 72 h

    Figure  2.  SEM fractographs of uncharged (a,b) and hydrogen-charged (c,d,e,f) 20Cr2Ni4A specimens at different current densities: (a,c,e) low magnification of the fracture surfaces; (b,d,f) high magnification of the fracture surface and brittle circle platform regions; (c,d) 4 mA·cm−2, 72 h; (e,f) 8 mA·cm−2, 72 h

    图  3  20Cr2Ni4A钢在16 mA·cm–2, 72 h的充氢制度下的拉伸试样的典型SEM断口形貌。(a,b)低倍形貌;(c)圆形脆性平台及平台中心的夹杂物形貌;(d)图(c)中圆形平台中心夹杂物的能谱;(e)圆形平台区域;(f)圆形平台外区域

    Figure  3.  SEM fractographs of a tensile specimen of 20Cr2Ni4A after hydrogen charging at 16 mA·cm−2 current density for 72 h: (a,b) overall view; (c) brittle circle platform regions and an inclusion in the center of a circle platform region; (d) EDX of the inclusion in (c); (e) the region within the circle platform; (f) the region outside of the circle platform

    图  4  充氢拉伸样中检测的夹杂物尺寸分布

    Figure  4.  Size distribution of inclusions detected in the hydrogen-charged tensile specimens

    图  5  氢脆拉伸法获得的极值统计图

    Figure  5.  Estimation of SEV method of hydrogen-charged tensile specimens

    图  6  金相法观察到的典型夹杂物形貌(a)及其能谱(b)

    Figure  6.  Typical inclusion observed by metallographic method (a) and corresponding EDX of the inclusion (b)

    图  7  20Cr2Ni4A钢的旋转弯曲疲劳试验结果。(a) SN曲线;(b)疲劳源夹杂物尺寸及其位置

    Figure  7.  Results of rotating bending fatigue test of 20Cr2Ni4A: (a) SN curves; (b) the size of inclusions at fracture origin and their distances from specimen surface

    图  8  20Cr2Ni4A钢疲劳断口的典型非金属夹杂物形貌(a)及其能谱(b)

    Figure  8.  Typical non-metallic inclusion at fracture origin of 20Cr2Ni4A obtained using the rotating bending fatigue test (a) and corresponding EDX of the inclusion (b)

    图  9  金相法与疲劳法获得的极值统计图

    Figure  9.  Estimation of the SEV method of inclusions obtained using the metallographic and fatigue specimens

    图  10  不同充氢电流密度下样品中氢含量(a)和工程应力–应变拉伸曲线(b)

    Figure  10.  Hydrogen content (a) and engineering stress–strain curves (b) of the specimens before and after hydrogen-charging at varying current densities

    图  11  20Cr2Ni4A钢的体积与疲劳强度的关系

    Figure  11.  Relationship between the volume of 20Cr2Ni4A steel and the fatigue strength

    表  1  实验料20Cr2Ni4A的化学成分(质量分数)

    Table  1.   Chemical composition of the tested steel 20Cr2Ni4A %

    CSiMnPSCrNiAlON
    0.150.290.450.0160.0071.443.370.0270.00220.0070
    下载: 导出CSV

    表  2  充氢后每个拉伸试样中最大夹杂物尺寸(V0=589 mm3, N=10)

    Table  2.   Summary of the maximum inclusion size detected in each hydrogen-charged tensile specimen (V0=589 mm3, N=10)

    Sample No.T-1T-2T-3T-4T-5T-6T-7T-8T-9T-10
    Maximum inclusion size /μm11.9620.2123.7514.0914.7120.1215.6518.8016.1817.55
    下载: 导出CSV

    表  3  每个金相样中最大夹杂物尺寸(V0=1.53 mm3, N=15)

    Table  3.   Summary of the maximum inclusion detected in each metallographic specimen (V0=1.53 mm3, N=15)

    Sample No.M-1M-2M-3M-4M-5M-6M-7M-8
    Maximum inclusion size /μm5.234.485.608.4512.998.877.427.63
    Sample No.M-9M-10M-11M-12M-13M-14M-15
    Maximum inclusion size /μm6.488.528.267.026.308.728.60
    下载: 导出CSV

    表  4  每个疲劳失效样品起裂源处夹杂物尺寸(V0=840 mm3, N=11)

    Table  4.   Summary of the inclusion size detected in fatigue failure origins (V0=840 mm3, N=11)

    Sample No.F-1F-2F-3F-4F-5F-6F-7F-8F-9F-10F-11
    Inclusion size /μm23.1622.3728.5031.0726.5226.2128.1026.7829.1830.3620.12
    下载: 导出CSV

    表  5  不同体积钢中最大夹杂物尺寸的预测

    Table  5.   Estimated maximum inclusion size for different volumes of the tested steel

    MethodVolume,V0 / mm3Maximum size of inclusion /μm
    V=103 mm3V=104 mm3V=105 mm3V=106 mm3V=5.02×106 mm3
    Fatigue84023.0532.7440.2147.5752.72
    Hydrogen embrittlement-tensile58916.0025.2633.2941.2546.81
    Metallographic1.5318.5022.6926.8831.0734.01
    下载: 导出CSV
  • [1] Savaria V, Bridier F, Bocher P. Predicting the effects of material properties gradient and residual stresses on the bending fatigue strength of induction hardened aeronautical gears. Int J Fatigue, 2016, 85: 70 doi: 10.1016/j.ijfatigue.2015.12.004
    [2] Jo B, Sharifimehr S, Shim Y, et al. Cyclic deformation and fatigue behavior of carburized automotive gear steel and predictions including multiaxial stress states. Int J Fatigue, 2017, 100: 454 doi: 10.1016/j.ijfatigue.2016.12.023
    [3] Nehila A, Li W, Gao N, et al. Very high cycle fatigue of surface carburized CrNi steel at variable stress ratio: failure analysis and life prediction. Int J Fatigue, 2018, 111: 112 doi: 10.1016/j.ijfatigue.2018.02.006
    [4] Liu P F, Li W, Nehila A, et al. High cycle fatigue property of carburized 20Cr gear steel under axial loading. Metals, 2016, 6(10): 246 doi: 10.3390/met6100246
    [5] Mengaroni S, Bambach M D, Cianetti F, et al. Strengthening improvement on gear steels. Steel Res Int, 2016, 87(5): 608 doi: 10.1002/srin.201500155
    [6] Dong W L, Ni H W, Zhang H, et al. Effect of slag composition on the cleanliness of 28MnCr5 gear steel in the refining processes. Int J Miner Metall Mater, 2016, 23(3): 269 doi: 10.1007/s12613-016-1235-y
    [7] Murakami Y, Kodama S, Konuma S. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions. Int J Fatigue, 1989, 11(5): 291 doi: 10.1016/0142-1123(89)90054-6
    [8] Atkinson H V, Shi G. Characterization of inclusions in clean steels: a review including the statistics of extremes methods. Prog Mater Sci, 2003, 48(5): 457 doi: 10.1016/S0079-6425(02)00014-2
    [9] Bartosiaki B G, Pereira J A M, Bielefeldt W V, et al. Assessment of inclusion analysis via manual and automated SEM and total oxygen content of steel. J Mater Res Technol, 2015, 4(3): 235 doi: 10.1016/j.jmrt.2015.01.008
    [10] Yu H X, Shao X J, Zhang J, et al. Study on the quantitative relationship between total oxygen content and non-metallic inclusion in steel with ASPEX SEM. Chin J Eng, 2015, 37(增刊1): 35

    于会香, 邵肖静, 张静, 等. 采用ASPEX扫描电镜研究钢中总氧和非金属夹杂物的定量关系. 工程科学学报, 2015, 37(增刊1):35)
    [11] Furuya Y, Matsuoka S, Abe T. A novel inclusion inspection method employing 20 kHz fatigue testing. Metall Mater Trans A, 2003, 34(11): 2517 doi: 10.1007/s11661-003-0011-6
    [12] Zhang J M, Zhang J F, Yang Z G, et al. Estimation of maximum inclusion size and fatigue strength in high-strength ADF1 steel. Mater Sci Eng A, 2005, 394(1-2): 126 doi: 10.1016/j.msea.2004.11.015
    [13] Shi G, Atkinson H V, Sellars C M, et al. Maximum inclusion size in two clean steels Part 2 use of data from cold crucible remelted samples and polished optical cross-sections. Ironmaking Steelmaking, 2000, 27(5): 361 doi: 10.1179/030192300677660
    [14] 杨振国, 张继明, 李守新, 等. 高周疲劳条件下高强钢临界夹杂物尺寸估算. 金属学报, 2005, 41(11):1136 doi: 10.3321/j.issn:0412-1961.2005.11.004

    Yang Z G, Zhang J M, Li S X, et al. Estimation of the critical size of inclusion in high strength steel under high cycle fatigue condition. Acta Metall Sin, 2005, 41(11): 1136 doi: 10.3321/j.issn:0412-1961.2005.11.004
    [15] Fujita S, Murakami Y. A new nonmetallic inclusion rating method by positive use of hydrogen embrittlement phenomenon. Metall Mater Trans A, 2013, 44(1): 303 doi: 10.1007/s11661-012-1376-1
    [16] Hui W J, Xu Z B, Zhang Y J, et al. Hydrogen embrittlement behavior of high strength rail steels: A comparison between pearlitic and bainitic microstructure. Mater Sci Eng A, 2017, 704: 199 doi: 10.1016/j.msea.2017.08.022
    [17] Wang C, Petit J, Huang Z Y, et al. Investigation of crack initiation mechanisms responsible for the fish eye formation in the very high cycle fatigue regime. Int J Fatigue, 2019, 119: 320 doi: 10.1016/j.ijfatigue.2018.06.016
    [18] Zhu M L, Jin L, Xuan F Z. Fatigue life and mechanistic modeling of interior micro-defect induced cracking in high cycle and very high cycle regimes. Acta Mater, 2018, 157: 259 doi: 10.1016/j.actamat.2018.07.036
    [19] Bhadeshia H K D H. Prevention of hydrogen embrittlement in steels. ISIJ Int, 2016, 56(1): 24 doi: 10.2355/isijinternational.ISIJINT-2015-430
    [20] Otsuka T, Hanada H, Nakashima H, et al. Observation of hydrogen distribution around non-metallic inclusions in steels with tritium microautoradiography. Fusion Sci Technol, 2005, 48(1): 708 doi: 10.13182/FST05-A1022
    [21] Takai K, Seki J I, Homma Y. Observation of trapping sites of hydrogen and deuterium in high-strength steels by using secondary ion mass spectrometry. Mater Trans JIM, 1995, 36(9): 1134 doi: 10.2320/matertrans1989.36.1134
    [22] 褚武扬, 乔利杰, 李金许, 等. 氢脆和应力腐蚀. 北京: 科学出版社, 2013

    Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion Cracking. Beijing: Science Press, 2013
    [23] Han J, Nam J H, Lee Y K. The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel. Acta Mater, 2016, 113: 1 doi: 10.1016/j.actamat.2016.04.038
    [24] Qi Y M, Luo H Y, Zheng S Q, et al. Effect of immersion time on the hydrogen content and tensile properties of A350LF2 steel exposed to hydrogen sulphide environments. Corros Sci, 2013, 69: 164 doi: 10.1016/j.corsci.2012.11.038
    [25] Todoshchenko O M I, Yagodzinskyy Y, Saukkonen T, et al. Role of nonmetallic inclusions in hydrogen embrittlement of high-strength carbon steels with different microalloying. Metall Mater Trans A, 2014, 45(11): 4742 doi: 10.1007/s11661-014-2447-2
    [26] Genel K. Estimation method for the fatigue limit of case hardened steels. Surf Coat Technol, 2005, 194(1): 91 doi: 10.1016/j.surfcoat.2004.04.077
    [27] Liu Y B, Li Y D, Li S X, et al. Prediction of the S-N curves of high-strength steels in the very high cycle fatigue regime. Int J Fatigue, 2010, 32(8): 1351 doi: 10.1016/j.ijfatigue.2010.02.006
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  589
  • HTML全文浏览量:  475
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-15
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回