• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3Cr钢在油水两相层流工况下的腐蚀行为

孟凡娟 王清 李慧心 向婉倩 姚海元 王赟 李清平 王贝 路民旭 张雷

孟凡娟, 王清, 李慧心, 向婉倩, 姚海元, 王赟, 李清平, 王贝, 路民旭, 张雷. 3Cr钢在油水两相层流工况下的腐蚀行为[J]. 工程科学学报, 2020, 42(8): 1029-1039. doi: 10.13374/j.issn2095-9389.2019.07.27.003
引用本文: 孟凡娟, 王清, 李慧心, 向婉倩, 姚海元, 王赟, 李清平, 王贝, 路民旭, 张雷. 3Cr钢在油水两相层流工况下的腐蚀行为[J]. 工程科学学报, 2020, 42(8): 1029-1039. doi: 10.13374/j.issn2095-9389.2019.07.27.003
MENG Fan-juan, WANG Qing, LI Hui-xin, XIANG Wan-qian, YAO Hai-yuan, WANG Yun, LI Qing-ping, WANG Bei, LU Min-xu, ZHANG Lei. Corrosion behavior for 3Cr steel under oil-water two-phase laminar flow conditions[J]. Chinese Journal of Engineering, 2020, 42(8): 1029-1039. doi: 10.13374/j.issn2095-9389.2019.07.27.003
Citation: MENG Fan-juan, WANG Qing, LI Hui-xin, XIANG Wan-qian, YAO Hai-yuan, WANG Yun, LI Qing-ping, WANG Bei, LU Min-xu, ZHANG Lei. Corrosion behavior for 3Cr steel under oil-water two-phase laminar flow conditions[J]. Chinese Journal of Engineering, 2020, 42(8): 1029-1039. doi: 10.13374/j.issn2095-9389.2019.07.27.003

3Cr钢在油水两相层流工况下的腐蚀行为

doi: 10.13374/j.issn2095-9389.2019.07.27.003
基金项目: 国家科技重大专项资助项目(2016ZX05028-004)
详细信息
    通讯作者:

    E-mail:zhanglei@ustb.edu.cn

  • 中图分类号: TG142.71

Corrosion behavior for 3Cr steel under oil-water two-phase laminar flow conditions

More Information
  • 摘要: 油水两相是海底管道和集输管线常见的腐蚀工况之一。以3Cr钢为代表的低Cr合金钢是目前具有良好耐蚀性能的重要材料,但是,在油水两相层流工况下,特别是加注了一定缓蚀剂的条件下,3Cr钢的适用性尚不明确。通过高温高压反应釜模拟了油水两相层流工况的腐蚀环境,结合扫描电子显微镜(SEM)、X射线衍射谱(XRD)、激光共聚焦拉曼光谱、电化学交流阻抗等测试表征方法,研究了3Cr钢的腐蚀行为及缓蚀剂对其耐蚀性能的影响。结果表明,在油水分层工况下,3Cr钢的腐蚀产物膜为明显的双层膜结构,其内层腐蚀产物膜为结构致密的富Cr层,表现出良好的抗CO2腐蚀性能,但加入100 mg·L−1十七烯基胺乙基咪唑啉季铵盐缓蚀剂后,3Cr钢并未得到有效的缓蚀保护。腐蚀产物分析和电化学研究表明,烷烃分子、缓蚀剂分子及富Cr层间存在竞争关系,烷烃分子干扰了缓蚀剂分子的有序排列,影响了3Cr钢的耐蚀性。
  • 图  1  十七烯基胺乙基咪唑啉季铵盐的结构

    Figure  1.  Structure of seventeen alkenyl amide ethyl imidazoline quaternary ammonium salt

    图  2  油水两相管道流型置示意图[20]

    Figure  2.  Schematic of the pipeline in oil-water flow[20]

    图  3  高温高压反应釜装置示意图

    Figure  3.  Schematic of the high-temperature and high-pressure autoclave

    图  4  3Cr钢及X65钢浸泡120 h后的平均腐蚀速率

    Figure  4.  Average corrosion rate of 3Cr steel and X65 steel after immersion for 120 h

    图  5  不同环境下3Cr钢及X65钢腐蚀产物膜的表面形貌及截面形貌。(a)单一水相中3Cr表面;(b)单一水相中3Cr截面;(c)油水分层后的水相中X65表面;(d)油水分层后的水相中X65截面;(e)油水分层后的水相中3Cr表面;(f)油水分层后的水相中3Cr截面;(g)添加OAI缓蚀剂后X65表面;(h)添加OAI缓蚀剂后X65截面;(i)添加OAI缓蚀剂后3Cr表面;(j)添加OAI缓蚀剂后3Cr截面

    Figure  5.  Surface topography and sectional morphology of the corrosion product film of 3Cr and X65 steel in different environments: (a) surface morphology on 3Cr in single water phase; (b) cross section of on 3Cr in single water phase; (c) surface morphology of X65 in water phase from 10% oil mixture; (d) cross section of X65 in water phase from 10% oil mixture; (e) surface morphology of 3Cr in water phase from 10% oil mixture; (f) cross section of 3Cr in water phase from 10% oil mixture; (g) surface morphology of X65 in water phase from 10% oil mixture with OAI addition; (h) cross section of X65 in water phase from 10% oil mixture with OAI addition; (i) surface morphology of 3Cr in water phase from 10% oil mixture with OAI addition; (j) cross section of 3Cr in water phase from 10% oil mixture with OAI addition

    图  6  3Cr钢及X65钢浸泡120 h后的XRD测试结果

    Figure  6.  XRD results of 3Cr and X65 steel after immersion for 120 h

    图  7  3Cr钢经120 h浸泡后在水相区的腐蚀产物膜拉曼分析结果

    Figure  7.  Raman analysis of corrosion product film in 3Cr steel after immersion for 120 h

    图  8  未添加缓蚀剂时3Cr钢在油水分层后水相区交流阻抗测试结果。(a)腐蚀初期;(b)腐蚀中期;(c)腐蚀后期

    Figure  8.  EIS results of 3Cr steel in the aqueous phase after oil-water two phase stratification without corrosion inhibitor: (a) initial stage of corrosion; (b) medium stage of corrosion; (c) later stage of corrosion

    图  9  3Cr钢在油水分层后水相区腐蚀18 h后的膜截面形貌

    Figure  9.  Sectional morphology of the corrosion product film of 3Cr steel after 18 h corrosion in the aqueous phase after oil-water two phase stratification

    图  10  3Cr钢在油水分层后水相区腐蚀72 h后的腐蚀产物界面形貌

    Figure  10.  Microscopic morphology of 3Cr steel after 72 h corrosion in the aqueous phase after oil-water two phase stratification

    图  11  未添加缓蚀剂时3Cr钢在油水分层后水相区的EIS测试等效电路图。(a)腐蚀初期(1、3、6、18 h);(b)腐蚀中期(24、36、48、72 h);(c)腐蚀后期(110、120 h)

    Figure  11.  Equivalent circuit used for fitting the EIS results of 3Cr steel in the aqueous phase after oil-water two phase stratification without corrosion inhibitor: (a) initial stage of corrosion(1, 3, 6, 18 h); (b) middle stage of corrosion (24, 36, 48, 72 h); (c) later stage of corrosion (110, 120 h)

    图  12  加注100 mg∙L−1缓蚀剂后3Cr钢在油水分层后水相区的EIS测试结果。(a)腐蚀初期;(b)腐蚀中期;(c)腐蚀后期

    Figure  12.  Results of 3Cr steel in the aqueous phase after oil-water two phase stratification with 100 mg∙L−1 corrosion inhibitor: (a) initial stage of corrosion; (b) medium stage of corrosion; (c) later stage of corrosion

    图  13  加注100 mg∙L−1缓蚀剂后3Cr钢在油水分层后水相区的EIS测试等效电路图。(a)腐蚀初期(1、3、6、18、24 h);(b)腐蚀中期(36、48 h);(c)腐蚀后期(72、110、120 h)

    Figure  13.  Equivalent circuit used for fitting the EIS results of 3Cr steel in the aqueous phase after oil-water two phase stratification with 100 mg∙L−1 corrosion inhibitor: (a) initial stage of corrosion (1, 3, 6, 18, 24 h); (b) middle stage of corrosion (36, 48 h); (c) later stage of corrosion (72, 110, 120 h)

    图  14  3Cr钢在油水分层后水相区的腐蚀反应模型示意图。(a)腐蚀初期;(b)腐蚀中期;(c)腐蚀后期

    Figure  14.  Schematic diagram of corrosion reaction model of 3Cr steel in the aqueous phase after oil-water two phase stratification:(a) initial stage of corrosion; (b) middle stage of corrosion; (c) later stage of corrosion

    图  15  加注100 mg∙L−1缓蚀剂后3Cr钢在油水分层后水相区浸泡120 h后的腐蚀模型示意图. (a)腐蚀初期;(b)腐蚀中期;(c)腐蚀后期

    Figure  15.  Schematic diagram of corrosion reaction model of 3Cr steel in the aqueous phase after oil-water two phase stratification with 100 mg∙L−1 corrosion inhibitor:(a) initial stage of corrosion; (b) middle stage of corrosion; (c) later stage of corrosion

    表  1  3Cr管线钢和X65管线钢的化学成分(质量分数)

    Table  1.   Chemical composition of the 3Cr and X65 pipeline steel (mass fraction) %

    ElementsCMnSiCrMoSPFe
    3Cr0.070.550.202.960.150.030.003bal
    X650.041.500.200.020.030.011bal
    下载: 导出CSV

    表  2  油田地层水采出液的组分

    Table  2.   Composition of the test solution simulating the oilfield formation water mg·L−1

    IonsNa+Mg2+Ca2+K+Cl${\rm{SO}}_4^{2-} $${\rm{HCO}}_3^{-} $
    Concentration262311920274764435297197519
    下载: 导出CSV

    表  3  腐蚀产物EDS测试结果(原子数分数)

    Table  3.   Corrosion products’ results of EDS (atomic fraction) %

    ElementsFeCrCaO
    3Cr in Single water phase10.0622.8965.68
    X65 in water phase from 10% oil mixture20.5059.01
    Inner layer of 3Cr in water phase from 10% oil mixture6.6718.633.9552.46
    Outer layer of 3Cr in water phase from 10% oil mixture18.823.7651.12
    X65 in water phase from 10% oil mixture with OAI44.2914.03
    Inner layer of 3Cr in water phase from 10% oil mixture with OAI20.316.444.0954.78
    Outer layer of 3Cr in water phase from 10% oil mixture with OAI20.036.9858.29
    下载: 导出CSV

    表  4  未添加缓蚀剂时3Cr钢在油水分层后水相区的EIS等效电路拟合结果

    Table  4.   Parameter values of the equivalent circuit of EIS of 3Cr steel in the aqueous phase after oil-water two phase stratification without corrosion inhibitor

    t/hRs/(Ω·cm2)CPEfRf/(Ω·cm2)CPEdlRct/(Ω·cm2)RL/(Ω·cm2)L/(H·cm−2)
    Y1/(10−4 Ω−1·cm−2∙sn)n1Y2/(Ω−1·cm−2∙sn)n2
    13.4236.2910.7261.21×10−20.3811.00071.1112.9501.678
    33.7146.5990.7501.00×10−20.6261.00060.819.8451.588
    64.0607.2290.80848.850.8221.0006.358.3042.306
    184.4977.4990.84039.341.2051.0005.419.2252.526
    244.7277.4610.84141.721.3401.00011.629.1832.584
    365.0727.1600.85046.541.9831.00010.919.8532.962
    485.4937.4220.85151.953.8251.0009.0911.4303.640
    725.9796.5330.81567.231.7391.0008.3110.6803.530
    1105.3216.9310.75321.421.4071.00061.71
    1204.8745.8060.50823.301.3511.00068.45
    下载: 导出CSV

    表  5  加注100 mg∙L−1缓蚀剂后3Cr钢在油水分层后水相区的EIS等效电路拟合结果

    Table  5.   Parameter values of the equivalent circuit of EIS of 3Cr steel in the aqueous phase after oil-water two phase stratification with 100 mg∙L−1 corrosion inhibitor

    t/hRs/(Ω·cm2)CPEf1Rf1/(Ω·cm2)CPEf2
    Y1/(10−6Ω−1·cm−2·sn)n1Y2/(10−4Ω−1·cm−2·sn)n2
    16.911.9020.739
    313.851.3070.756
    620.571.1760.705
    1878.851.1840.457
    2487.601.1090.473
    360.100.3310.716181.32.2690.372
    480.100.1690.610386.82.2660.445
    720.013.4130.542541.30.9550.653
    1100.080.2450.742411.21.2110.556
    1200.061.1030.627499.81.0890.639
    t/hRf2/(Ω·cm2)CPEdlRct/(Ω·cm2)RL/(Ω·cm2)L/(H·cm−2)
    Y3/(Ω−1·cm−2·sn)n3
    1255.30.2821.00036.9070.125.52
    3397.50.1321.00072.25103.446.43
    6501.20.0841.00048.85121.145.66
    18846.50.1601.000137.10219.686.94
    24872.60.1531.000139.30222.989.85
    36957.70.2901.000175.10351.2194.00
    481079.00.1111.000205.90371.2235.10
    721309.00.1511.000235.50
    1101662.00.1461.000232.70
    1201687.00.1071.000271.5
    下载: 导出CSV
  • [1] Pouraria H, Seo J K, Paik J K. A numerical study on water wetting associated with the internal corrosion of oil pipelines. <italic>Ocean Eng</italic>, 2016, 122: 105 doi: 10.1016/j.oceaneng.2016.06.022
    [2] Gardner T, Paolinelli L D, Nesic S. Study of water wetting in oil-water flow in a small-scale annular flume. <italic>Exp Therm Fluid Sci</italic>, 2019, 102: 506 doi: 10.1016/j.expthermflusci.2018.12.010
    [3] Choi H J, Tonsuwannarat T. Unique roles of hydrocarbons in flow-induced sweet corrosion of X-52 carbon steel in wet gas condensate producing wells // The 57th NACE Annual Conference. Houston, 2002: 02259
    [4] Choi H J. Effect of liquid hydrocarbons on flow-induced sweet corrosion of carbon steel // The 59th NACE Annual Conference. Houston, 2004: 04664
    [5] Pigliacampo L, Gonzales J C, Turconi G L. Window of application an operational track of low carbon 3Cr steel tubular // The 61th NACE Annual Conference. Houston, 2006: 06133
    [6] 胡丽华, 俞曼丽, 常炜, 等. Cr含量对低合金管线钢CO<sub>2</sub>腐蚀性能的影响. 腐蚀科学与防护技术, 2011, 23(3):256

    Hu L H, Yu M L, Chang W, et al. Effect of Cr content on resistance to CO<sub>2</sub>-induced corrosion of low alloy pipeline steels. <italic>Corros Sci Prot Technol</italic>, 2011, 23(3): 256
    [7] Liu W, Lu S L, Zhang P, et al. Effect of silty sand with different sizes on corrosion behavior of 3Cr steel in CO<sub>2</sub> aqueous environment. <italic>Appl Surf Sci</italic>, 2016, 379: 163 doi: 10.1016/j.apsusc.2016.04.044
    [8] 张雷, 胡丽华, 孙建波, 等. 抗CO<sub>2</sub>腐蚀低Cr管线钢组织和性能研究. 材料工程, 2009(5):6 doi: 10.3969/j.issn.1001-4381.2009.05.002

    Zhang L, Hu L H, Sun J B, et al. Microstructure and properties of CO<sub>2</sub> corrosion resistant low Cr pipeline steels. <italic>J Mater Eng</italic>, 2009(5): 6 doi: 10.3969/j.issn.1001-4381.2009.05.002
    [9] Guo S Q, Xu L N, Zhang L, et al. Corrosion of alloy steels containing 2% chromium in CO<sub>2</sub> environments. <italic>Corros Sci</italic>, 2012, 63: 246 doi: 10.1016/j.corsci.2012.06.006
    [10] Xie Y, Xu L N, Gao C L, et al. Corrosion behavior of novel 3%Cr pipeline steel in CO<sub>2</sub> top-of-line corrosion environment. <italic>Mater Des</italic>, 2012, 36: 54 doi: 10.1016/j.matdes.2011.11.003
    [11] 许立宁, 朱金阳, 谢云, 等. 含Cr管线钢的力学性能和耐蚀性能. 北京科技大学学报, 2014, 36(2):200

    Xu L N, Zhu J Y, Xie Y, et al. Mechanical properties and corrosion behavior of Cr containing pipeline steel. <italic>J Univ Sci Technol Beijing</italic>, 2014, 36(2): 200
    [12] Kermani B, Gonzales J C, Turconi G L, et al. In-field corrosion performance of 3% Cr steels in sweet and sour downhole production and water injection // Corrosion 2004. New Orleans, 2004: NACE-04111
    [13] Chen C F, Lu M X, Sun D B, et al. Effect of chromium on the pitting resistance of oil tube steel in a carbon dioxide corrosion system. <italic>Corrosion</italic>, 2005, 61(6): 594 doi: 10.5006/1.3278195
    [14] Hua Y, Mohammed S, Barker R, et al. Comparisons of corrosion behaviour for X65 and low Cr steels in high pressure CO<sub>2</sub>-saturated brine. <italic>J Mater Sci Technol</italic>, 2020, 41(15): 21
    [15] Wei L, Gao K W. Understanding the general and localized corrosion mechanisms of Cr-containing steels in supercritical CO<sub>2</sub>-saturated aqueous environments. <italic>J Alloys Compd</italic>, 2019, 792(5): 328
    [16] Zhu J Y, Xu L N, Lu M X, et al. Essential criterion for evaluating the corrosion resistance of 3Cr steel in CO<sub>2</sub> environments: prepassivation. <italic>Corros Sci</italic>, 2015, 93: 336 doi: 10.1016/j.corsci.2015.01.030
    [17] 王磊. CO2腐蚀产物膜微观结构与离子选择性研究[学位论文]. 北京: 中国石油大学(北京), 2007

    Wang L. Microstructure and Ion Selectivity of CO2 Corrosion Product Films [Dissertation]. Beijing: China University of Petroleum, Beijing, 2007
    [18] 王珂, 尹志福, 杨帆, 等. 模拟CO<sub>2</sub>驱环境下3Cr和20#集输管线钢防腐性能对比. 全面腐蚀控制, 2013, 27(7):45 doi: 10.3969/j.issn.1008-7818.2013.07.012

    Wang K, Yin Z F, Yang F, et al. Comparison of anti-corrosion properties of pipeline steels between 3Cr and 20<sup>#</sup> under simulated CO<sub>2</sub> flooding environment. <italic>Total Corros Control</italic>, 2013, 27(7): 45 doi: 10.3969/j.issn.1008-7818.2013.07.012
    [19] 王珂, 张永强, 尹志福, 等. N80和3Cr油管钢在CO<sub>2</sub>驱油环境中的腐蚀行为. 腐蚀与防护, 2015, 36(8):706 doi: 10.11973/fsyfh-201508003

    Wang K, Zhang Y Q, Yin Z F, et al. Corrosion behavior of N80 and 3Cr tubing steels in CO<sub>2</sub> flooding environment. <italic>Corros Prot</italic>, 2015, 36(8): 706 doi: 10.11973/fsyfh-201508003
    [20] Kee K E, Richter S, Babic M, et al. Experimental study of oil-water flow patterns in a large diameter flow loop—the effect on water wetting and corrosion. <italic>Corrosion</italic>, 2015, 72(4): 569
    [21] 崔丽, 高艳, 顾长石, 等. 微量元素Cr对船用耐蚀钢焊接接头组织和性能的影响. 北京工业大学学报, 2018, 44(6):953

    Cui L, Gao Y, Gu C S, et al. Effect of trace element Cr on microstructures and properties of welded Joints of marine corrosion resisting steels. <italic>J Beijing Univ Technol</italic>, 2018, 44(6): 953
    [22] Wang B, Xu L N, Liu G Z, et al. Corrosion behavior and mechanism of 3Cr steel in CO<sub>2</sub> environment with various Ca<sup>2+</sup> concentration. <italic>Corros Sci</italic>, 2018, 136: 210 doi: 10.1016/j.corsci.2018.03.013
    [23] 林学强. 碳钢和低合金钢在含O2高温高压CO2油气田环境中腐蚀行为研究[学位论文]. 北京: 北京科技大学, 2015

    Lin X Q. Corrosion Behavior of Carbon steel and Low Alloy Steel in CO2 and O2 High Temperature and High Pressure Environment of Oil and Gas Fields[Dissertation]. Beijing: University of Science and Technology Beijing, 2015
    [24] 刘嘉欣, 周子力, 曹中秋, 等. Cu-50Co块体合金在NaCl溶液中的腐蚀性能研究. 稀有金属, 2020, 44(2):127

    Liu J X, Zhou Z L, Cao Z Q, et al. Corrosion properties of Cu-50Co bulk alloys in NaCl solution. <italic>Chin J Rare Met</italic>, 2020, 44(2): 127
    [25] Zhu J Y, Xu L N, Lu M X. Electrochemical impedance spectroscopy study of the corrosion of 3Cr pipeline steel in simulated CO<sub>2</sub>-saturated oilfield formation waters. <italic>Corrosion</italic>, 2015, 71(7): 854 doi: 10.5006/1494
    [26] Li C, Richter S, Nesic S. How do inhibitors mitigate corrosion in oil-water two-phase flow beyond lowering the corrosion rate. <italic>Corrosion</italic>, 2014, 70(9): 958 doi: 10.5006/1057
    [27] Zhu J Y, Xu L N, Lu M X, et al. Interaction effect between Cr(OH)<sub>3</sub> passive layer formation and inhibitor adsorption on 3Cr steel surface. <italic>RSC Adv</italic>, 2015, 5(24): 18518 doi: 10.1039/C4RA15519J
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  453
  • HTML全文浏览量:  363
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-27
  • 刊出日期:  2020-09-11

目录

    /

    返回文章
    返回