-
摘要: 锌是现代工业所必需的有色金属,属于很重要的战略资源,其在世界所有金属产量中排名第四,仅次于铁、铝和铜。随着低品位难处理锌资源的种类和产量的不断增加,以及湿法冶金技术的不断发展,锌的生物浸出技术得到了研究人员的广泛关注,并展示出了良好的潜在应用前景。本文首先较为详细的介绍了含锌资源的矿物特征,并对其生物可浸性进行了分析。其次,对目前锌的生物浸出体系,所用浸矿菌种,浸出过程所涉及的电化学、热力学、动力学以及浸出机理进行了归纳总结;接着,对锌的生物浸出技术现状和工艺新进展进行了阐述。最后,展望了锌的生物浸出工艺的发展趋势及后续的研究热点。研究表明高效浸锌菌种的选育驯化、与之相匹配的工艺及装备研发,是锌的生物浸出当今研究热点及未来发展方向。Abstract: Zinc is a nonferrous metal necessary for modern industry and an important strategic resource. It ranks fourth among all metals in terms of world production after iron, aluminum, and copper. Zinc sulfide ore is the most important zinc-producing mineral in the world, followed by associated zinc oxide ore and zinc-containing secondary resources. China is rich in zinc resources. Most of China’s lead–zinc and copper–zinc deposits are mainly lead–zinc integrated deposits, lead–zinc sulfide deposits, and other associated components. These types of mineral resources lead to wastage of resources in the development and utilization processes and affect the subsequent smelting process, which places considerable pressure on the production efficiency and ecological environment. The current mining and metallurgical industry vigorously promotes industrial development and has shifted in the favor of recycling, low-carbon, and green technologies. The biological leaching technology, as a green and low-carbon wet metallurgy technology, meets the current environmental protection policy requirements. This technology uses microorganisms and their metabolites to soak valuable metals in ores and has many advantages such as simple process, environmental protection, and capability to process low-grade ores. With the development of hydrometallurgical technology, the biological leaching technology of zinc from various types of low-grade zinc resources has attracted researchers’ attention and shown considerable application potential. First, this study introduced the mineral characteristics of zinc resources and analyzed their bioleachability. Then, the bioleaching process of zinc was summarized, and the leaching bacteria, electrochemistry, thermodynamics, kinetics, and leaching mechanism were systemically introduced. Furthermore, the current situation and/or progress of zinc bioleaching technology were generalized. Finally, the development trend of zinc bioleaching process and future research hotspots were considered. This study shows that the breeding of highly efficient bioleaching bacteria and the corresponding technology and equipment inventions are the current research hotspots and can also be the development directions for zinc bioleaching in the future. This will help ensure rapid and effective development of the zinc bioleaching technology.
-
Key words:
- zinc /
- bioleaching /
- bacteria /
- reaction mechanism /
- extraction
-
表 1 锌的生物浸出特点
Table 1. Bioleaching characteristics of zinc
Types Zinc resources Bacterial species Extractant Characteristic Sulfide ore Sphalerite, marmatite, wurtzite Inorganic acidophilic bacteria Fe3+,H2SO4 Short leaching cycle and high efficiency Zinc-containing polymetallic
sulfide oreInorganic acidophilic bacteria Fe3+,H2SO4 Selective priority leaching Smithsonite, zincite, sillizonite, heteropolar Heterotrophic alkaline bacteria Organic acid Need external energy substrate Non-sulfide ore Electronic waste such as zinc-manganese batteries Inorganic acidophilic bacteria, heterotrophic alkaline bacteria Fe3+,H2SO4, Organic acid Need external energy substrate and low efficiency Lead-zinc smelting slag Inorganic acidophilic bacteria, heterotrophic alkaline bacteria Fe3+,H2SO4, Organic acid High acid consumption and high leaching rate Zinc-containing sludge and wastewater Inorganic acidophilic bacteria, heterotrophic alkaline bacteria Fe3+,H2SO4, Organic acid Direct decomposition of organic matter and sulfide 表 2 部分常用浸矿细菌特征
Table 2. Some frequently used bioleaching bacteria characteristics
Types Bioleaching bacteria Growth environment Optimum growth pH value Energy substance Oxidation products Inorganic acidophilic bacteria Acidithiobacillus ferrooxidans Acidic 2.5 Fe2+,${{\rm{S}}_2}{\rm{O}}_3^{2 - }$,S0,Sulfide ore Fe3+,${\rm{SO}}_4^{2 - }$ Leptospirillum ferrooxidans Acidic 1.5‒3.0 Fe2+ Fe3+- Acidimirobium ferrooxidans Acidic 2.0 Fe2+ Fe3+ Sulfobacillus thermosul fidooxidans Acidic 2.0 Fe2+,${{\rm{S}}_2}{\rm{O}}_3^{2 - }$,S0,Sulfide ore Fe3+,${\rm{SO}}_4^{2 - }$ Acidithiobacillus thiooxidans Acidic 1.5‒3 ${{\rm{S}}_2}{\rm{O}}_3^{2 - }$,S0,Sulfide ore Thioalklimicrobium Alkaline 9.5‒10.0 ${{\rm{S}}_2}{\rm{O}}_3^{2 - }$, S0,Sulfide ore ${\rm{SO}}_4^{2 - }$ Thiobacillus novellus Alkaline 7.8‒9.0 ${{\rm{S}}_2}{\rm{O}}_3^{2 - }$,S0,Sulfide ore ${\rm{SO}}_4^{2 - }$ Thioalkalivibrio Alkaline 10.0‒10.2 ${{\rm{S}}_2}{\rm{O}}_3^{2 - }$,Sulfide ore S0 Thiobacillus versutus Alkaline 8.0‒9.0 ${{\rm{S}}_2}{\rm{O}}_3^{2 - }$,Sulfide ore ${\rm{SO}}_4^{2 - }$ Alpha proteobacterium Alkaline 8.5‒8.8 ${{\rm{S}}_2}{\rm{O}}_3^{2 - }$,Sulfide ore S0 Pseudomonas stutzeri Alkaline 7.5‒8.0 Sulfide ore ${\rm{SO}}_4^{2 - }$ Heterotrophic alkaline bacteria Pseudomonas aeruginosa Alkaline — C6H12O6,Sulfide ore C2H4O2、${\rm{SO}}_4^{2 - }$ Arthrobacter oxydans Alkaline — Organic compound C2H2O4、C3H6O3 Microbacterium sp. Alkaline — Organic compound C2H2O4、C6H12O7 Bacillus megaterium Alkaline 4.0‒7.5 Organic compound C6H8O7 Promicromonospora sp. Alkaline — Organic compound C6H12O7 Number Model Types 1 ${K_{\rm{t}}} = 1 - {(1 - X)^{\frac{2}{3}}}$ Hybrid control model of shrin-king core model (diffusion control; chemical reaction control) 2 ${K_{\rm{t}}} = {[1 - {(1 - X)^{1/3}}]^2}$ Product layer diffusion model 3 ${K_{\rm{t}}} = - \ln (1 - X)$ Hybrid control model (surface reaction control, sulfur layer diffusion control) 4 ${K_{\rm{t}}} = 1 - \dfrac{2}{3}X - {\left( {1 - X} \right)^{{\frac{1}{3}}}}$ Diffusion of porous product layer based on shrinking core model 5 ${K_{\rm{t}}} = \dfrac{1}{3}\ln (1 - X) + [{(1 - X)^{ - \frac{1}{3}}} - 1]$ Interface transfer and product layer diffusion 6 ${K_{\rm{t}}} = 1 - 3{\left( {1 - X} \right)^{\frac{2}{3}}} + 2\left( {1 - X} \right)$ Diffusion of H+ in the product layer of the shrinking core model 7 ${K_{\rm{t}}} = 1 - {(1 - 0.45X)^{1/3}}$ Surface chemical reaction diffusion of shrinking core model -
[1] 石绍渊, 张广积, 赵月峰, 等. 硫化锌矿的生物浸出. 国外金属矿选矿, 2002(02):12Shi S Y, Zhang G J, Zhao Y F, et al. Bioleaching of zinc sulfide ore. Metallic Ore Dressing Abroad, 2002(02): 12 [2] 骆任. W-1抑制剂对内蒙古某浮选铅精矿降锌选矿试验研究. 湖南有色金属, 2018, 34(2):15Luo R. Experimental study of W-1 inhibitor on zinc flotation of a flotation lead concentrate in Inner Mongolia. Hunan Nonferrous Met, 2018, 34(2): 15 [3] 孙志健. 青海某难选铅锌矿选矿试验研究. 有色金属(选矿部分), 2016(5):22Sun Z J. Processing research refractory lead-zinc ore in Qinghai. Nonferrous Met (Miner Process Sect) , 2016(5): 22 [4] 刘晓, 张宇, 王楠, 等. 我国铅锌矿资源现状及其发展对策研究. 中国矿业, 2015, 24(增刊1): 6Liu X, Zhang Y, Wang N, et al. Pb‒Zn metal resources situation and suggestion for Pb‒Zn metals industry development in China. China Min Mag, 2015, 24(Suppl 1): 6 [5] 温建康. 生物冶金的现状与发展. 中国有色金属, 2008(10):74Wen J K. Current status and development of biometallurgy. China Nonferrous Met, 2008(10): 74 [6] 李广泽, 王洪江, 吴爱祥, 等. 生物浸矿技术研究现状. 湿法冶金, 2014, 33(02):82Li G Z, Wang H J, Wu A X, et al. Research status on bioleaching of ores. Hydrometallurgy China, 2014, 33(02): 82 [7] 王建雄, 罗印敏, 沈立俊. 某铅锌矿石工艺矿物学研究. 湖南有色金属, 2003, 19(5):4Wang J X, Luo Y M, Shen L J. Craft mineralogy research of lead-zinc ore somewhere. Hunan Nonferrous Met, 2003, 19(5): 4 [8] 童雄, 何剑, 饶峰, 等. 云南都龙高铁闪锌矿的活化试验研究. 矿冶工程, 2006, 26(4):19Tong X, He J, Rao F, et al. Experimental study on activation of high iron-bearing marmatite. Min Metall Eng, 2006, 26(4): 19 [9] 单连军. 内蒙古敖包吐铅锌矿矿石工艺矿物学研究及矿石难选因素分析. 有色矿冶, 2018, 34(5):19Shan L J. Mineralogical study on the refractory factor of one Pb‒Zn ore originated from Inner Mongolia Aobaotu and discussion on the refractory factors. Non-ferrous Min Metall, 2018, 34(5): 19 [10] Saririchi T, Azad R R, Arabian D, et al. On the optimization of sphalerite bioleaching; the inspection of intermittent irrigation, type of agglomeration, feed formulation and their interactions on the bioleaching of low-grade zinc sulfide ores. Chem Eng J, 2012, 187: 217 doi: 10.1016/j.cej.2010.10.013 [11] 王蕾, 夏金兰, 朱泓睿, 等. 微生物−矿物相互作用及界面显微分析研究进展. 微生物学通报, 2017, 44(3):716Wang L, Xia J L, Zhu H R, et al. Progress on research of microbe−mineral interaction and interfacial micro-analysis. Microbiol China, 2017, 44(3): 716 [12] Brierley C L. Biohydrometallurgical prospects. Hydrometallurgy, 2010, 104(3-4): 324 doi: 10.1016/j.hydromet.2010.03.021 [13] Mehrabani J V, Shafaei S Z, Noaparast M, et al. Bioleaching of sphalerite sample from Kooshk lead–zinc tailing dam. Trans Nonferrous Met Soc China, 2013, 23(12): 3763 doi: 10.1016/S1003-6326(13)62927-1 [14] 武彪, 温建康, 刘学, 等. 一种浸矿菌及低品位硫化锌矿的选择性生物浸出工艺: 中国专利, 200810227389.8. 2008-11-27Wu B, Wen J K, Liu X, et al. A Selective Bioleaching Process for Leaching Bacteria and Low-grade Zinc Sulfide Ore: China Patent, 200810227389.8. 2008-11-27 [15] 李珊珊. 锌冶炼废渣资源化利用的研究[学位论文]. 长沙: 中南大学, 2012Li S S. Study on the Resources and Utilization of Smelting Waste of Zinc[Dissertation]. Changsha: Central South University, 2012 [16] Sorokin D Y, Kuenen J G. Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiol Rev, 2005, 29(4): 685 doi: 10.1016/j.femsre.2004.10.005 [17] Sorokin D Y, Cherepanov A, De Vries S, et al. Identification of cytochrome c oxidase in the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium ‘Thioalcalomicrobium aerophilum’ strain AL 3. FEMS Microbiol Lett, 1999, 179(1): 91 doi: 10.1111/j.1574-6968.1999.tb08713.x [18] Willscher S, Bosecker K. Studies on the leaching behaviour of heterotrophic microorganisms isolated from an alkaline slag dump. Hydrometallurgy, 2003, 71(1-2): 257 doi: 10.1016/S0304-386X(03)00164-6 [19] 熊有为, 王洪江, 吴爱祥, 等. 碱性微生物浸矿研究现状及发展趋势. 湿法冶金, 2012, 31(4):199Xiong Y W, Wang H J, Wu A X, et al. Research status and development trend on bioleaching with alkaline microbes. Hydrometallurgy, 2012, 31(4): 199 [20] Shabani M A, Irannajad M, Meshkini M, et al. Investigations on bioleaching of copper and zinc oxide ores. Trans Indian Inst Met, 2019, 72(3): 609 doi: 10.1007/s12666-018-1509-3 [21] Y·科西尼, 周廷熙, 李长根. 嗜热嗜酸A.b.酸杆菌浸出硫化锌精矿. 国外金属矿选矿, 2000(9):31Cocini Y, Zhou T X, Li C G. Leaching of zinc sulfide concentrate by thermophilic acidophilic A.b. acid bacteria. Metallic Ore Dress Abroad, 2000(9): 31 [22] 李啊林, 黄松涛, 温建康, 等. 中等嗜热菌浸出德兴黄铜矿的试验研究. 金属矿山, 2011(11):78Li A L, Huang S T, Wen J K, et al. Research on the bioleaching of chalcopyrite from Dexing copper mine by moderate thermophiles. Met Mine, 2011(11): 78 [23] 刘伟芳, 王洪江, 张旭, 等. 某硫化铜矿尾矿碱性细菌浸出试验研究. 矿冶工程, 2011, 31(3):89Liu W F, Wang H J, Zhang X, et al. Experimental study on bioleaching of copper sulfide tailings under alkaline conditions. Min Metall Eng, 2011, 31(3): 89 [24] Willscher S, Bosecker K. Studies on the leaching behaviour of heterotrophic microorganisms isolated from an alkaline slag dump. Hydrometallurgy, 2003, 71(1): 257 [25] Shabani M A, Irannajad M, Meshkini M, et al. Investigations on bioleaching of copper and zinc oxide ores. Trans Indian Inst Met, 2019, 72(3): 609 doi: 10.1007/s12666-018-1509-3 [26] Richter C, Kalka H, Myers E, et al. Constraints of bioleaching in in-situ recovery applications. Hydrometallurgy, 2018, 178: 209 doi: 10.1016/j.hydromet.2018.04.008 [27] Schippers A, Hedrich S, Vasters J, et al. Biomining: metal recovery from ores with microorganisms//Geobiotechnology I. Heidelberg: Springer, 2013 [28] Fomchenko N V, Muravyov M I. Selective leaching of zinc from copper-zinc concentrate. Appl Biochem Microbiol, 2017, 53(1): 73 doi: 10.1134/S0003683817010197 [29] Lizama H M, Fairweather M J, Dai Z, et al. How does bioleaching start? Hydrometallurgy, 2003, 69(1-3): 109 doi: 10.1016/S0304-386X(03)00028-8 [30] Fowler T A, Crundwell F K. The role of Thiobacillus ferrooxidans, in the bacterial leaching of zinc sulphide. Process Metall, 1999, 9: 273 doi: 10.1016/S1572-4409(99)80027-3 [31] Vera M, Schippers A, Sand W. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A. Appl Microbiol Biotechnol, 2013, 97(17): 7529 doi: 10.1007/s00253-013-4954-2 [32] Schippers A, Sand W. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol, 1999, 65(1): 319 doi: 10.1128/AEM.65.1.319-321.1999 [33] Zhao L, Wang Y, Jin L, et al. Decomposition of hydrogen sulfide in non-thermal plasma aided by supported CdS and ZnS semiconductors. Green Chem, 2013, 15(6): 1509 doi: 10.1039/c3gc00092c [34] Chen S, Qiu G Z, Qin W Q, et al. Bioleaching of sphalerite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans cultured in 9K medium modified with pyrrhotite. J Cent South Univ Technol, 2008, 15(04): 79 [35] Schippers A. Biogeochemistry of metal sulfide oxidation in mining environments, sediments, and soils. Spe Paper Geolog Soc Am, 2004, 379: 49 [36] Rohwerder T, Sand W. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology, 2003, 149(7): 1699 doi: 10.1099/mic.0.26212-0 [37] Balci N, Mayer B, Shanks Ⅲ W C, et al. Oxygen and sulfur isotope systematics of sulfate produced during abiotic and bacterial oxidation of sphalerite and elemental sulfur. Geochim Cosmochim Acta, 2012, 77: 335 doi: 10.1016/j.gca.2011.10.022 [38] Gu G H, Sun X J, Hu K T, et al. Electrochemical oxidation behavior of pyrite bioleaching by Acidthiobacillus ferrooxidans. Trans Nonferrous Met Soc China, 2012, 22(5): 1250 doi: 10.1016/S1003-6326(11)61312-5 [39] Jyothi N, Sudha K N, Natarajan K A. Electrochemical aspects of selective bioleaching of sphalerite and chalcopyrite from mixed sulphides. Int J Miner Process, 1989, 27(3-4): 189 doi: 10.1016/0301-7516(89)90064-1 [40] Ahonen L, Tuovinen O H. Silver catalysis of the bacterial leaching of chalcopyrite-containing ore material in column reactors. Miner Eng, 1990, 3(5): 437 doi: 10.1016/0892-6875(90)90037-C [41] K·A·兰特拉金, 王军. 硫化矿生物浸出电化学. 国外金属矿选矿, 1997(2):44Lantrajin K A, Wang J. Bioleaching electrochemistry of sulfide ores. Metallic Ore Dress Abroad, 1997(2): 44 [42] 张英杰, 杨显万. 硫化矿生物浸出过程的热力学. 贵金属, 1998, 19(3):26Zhang Y J, Yang X W. Thermodynamics during bioleaching processes of sulfide-ores. Precious Met, 1998, 19(3): 26 [43] Ghassa S, Noaparast M, Shafaei S Z, et al. A study on the zinc sulfide dissolution kinetics with biological and chemical ferric reagents. Hydrometallurgy, 2017, 171: 362 doi: 10.1016/j.hydromet.2017.06.012 [44] Conić V T, Vujasinović M M R, Trujić V K, et al. Copper, zinc, and iron bioleaching from polymetallic sulphide concentrate. Trans Nonferrous Met Soc China, 2014, 24(11): 3688 doi: 10.1016/S1003-6326(14)63516-0 [45] 周秀丽, 郑越, 王淑华, 等. 电子垃圾生物浸出的电化学强化机制. 环境化学, 2017, 36(10):15Zhou X L, Zheng Y, Wang S H, et al. Mechanisms of bioleaching electrochemstry-enhanced of electronic wastes. Environmentally Chemistry, 2017, 36(10): 15 [46] Sajjad W, Zheng G D, Din G, et al. Metals extraction from sulfide ores with microorganisms: the bioleaching technology and recent developments. Trans Indian Inst Met, 2019, 72(3): 559 doi: 10.1007/s12666-018-1516-4 [47] Kumar C G, Mamidyala S K, Sujitha P, et al. Evaluation of critical nutritional parameters and their significance in the production of rhamnolipid biosurfactants from Pseudomonas aeruginosa BS-161R. Biotechnol Prog, 2012, 28(6): 1507 doi: 10.1002/btpr.1634 [48] Pirôllo M P S, Mariano A P, Lovaglio R B, et al. Biosurfactant synthesis by Pseudomonas aeruginosa LBI isolated from a hydrocarbon-contaminated site. J Appl Microbiol, 2008, 105(5): 1484 doi: 10.1111/j.1365-2672.2008.03893.x [49] Diaz M A, De Ranson I U, Dorta B, et al. Metal removal from contaminated soils through bioleaching with oxidizing bacteria and rhamnolipid biosurfactants. Soil Sediment Contamin Int J, 2015, 24(1): 16 doi: 10.1080/15320383.2014.907239 [50] Yang Z H, Zhang Z, Chai L Y, et al. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90. J Hazard Mater, 2016, 301: 145 doi: 10.1016/j.jhazmat.2015.08.047 [51] Zhu Y, Zeng G M, Zhang P Y, et al. Feasibility of bioleaching combined with Fenton-like reaction to remove heavy metals from sewage sludge. Bioresour Technol, 2013, 142: 530 doi: 10.1016/j.biortech.2013.05.070 [52] Charikinya E, Bradshaw S, Becker M. Characterising and quantifying microwave induced damage in coarse sphalerite ore particles. Miner Eng, 2015, 82: 14 doi: 10.1016/j.mineng.2015.07.020 [53] Natarajan G, Ting Y P. Gold biorecovery from e-waste: an improved strategy through spent medium leaching with pH modification. Chemosphere, 2015, 136: 232 doi: 10.1016/j.chemosphere.2015.05.046 [54] 牛志睿, 李彤, 苏沉, 等. 废旧锌锰电池生物淋滤-水热法制备纳米锰锌铁氧体. 环境科学学报, 2017, 37(9):3356Niu Z R, Li T, Su C, et al. Preparation of Mn-Zn ferrite from spent Zn‒Mn batteries using bioleaching liquor as precursor. Acta Sci Circum, 2017, 37(9): 3356 [55] Kaksonen A H, Perrot F, Morris C, et al. Evaluation of submerged bio-oxidation concept for refractory gold ores. Hydrometallurgy, 2014, 141: 117 doi: 10.1016/j.hydromet.2013.10.012 [56] Haschke M, Ahmadian J, Zeidler L, et al. In-situ recovery of critical technology elements. Procedia Eng, 2016, 138: 248 doi: 10.1016/j.proeng.2016.02.082 [57] Pakostova E, Grail B M, Johnson D B. Indirect oxidative bioleaching of a polymetallic black schist sulfide ore. Miner Eng, 2017, 106: 102 doi: 10.1016/j.mineng.2016.08.028 [58] 孙建之, 陈勃伟, 温建康, 等. 镍矿湿法冶金技术应用进展及研究展望. 中国有色金属学报, 2018, 28(2):356 doi: 10.1016/S1003-6326(18)64669-2Sun J Z, Chen B W, Wen J K, et al. Application and research progresses of hydrometallurgy technology for nickel ore. Chin J Nonferrous Met, 2018, 28(2): 356 doi: 10.1016/S1003-6326(18)64669-2 [59] Riekkola-Vanhanen M. Talvivaara Sotkamo mine—bioleaching of a polymetallic nickel ore in subarctic climate. Nova Biotechnol, 2010, 10(1): 7 [60] 傅开彬, 宁燕, 王进明, 等. 四川里伍铜矿尾矿生物浸出液中回收铜、锌的研究. 西南科技大学学报, 2017, 32(1):10Fu K B, Ning Y, Wang J M, et al. Recovering copper and zinc from bioleaching lixivium of Liwu Copper Mine tailings by process of solvent extraction-precipitation. J Southwest Univ Sci Technol, 2017, 32(1): 10 [61] 孙传尧,周俊武,贾木欣,等. 基因矿物加工工程研究. 有色金属(选矿部分), 2018(1):1Sun C Y, Zhou J W, Jia M X, et al. Research on genetic mineral processing engineering. Nonferrous Met (Miner Process Sect) , 2018(1): 1 -