• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锌的生物浸出技术现状及研究进展

李旭 高文成 温建康 武彪 刘学

李旭, 高文成, 温建康, 武彪, 刘学. 锌的生物浸出技术现状及研究进展[J]. 工程科学学报, 2020, 42(6): 693-703. doi: 10.13374/j.issn2095-9389.2019.09.24.001
引用本文: 李旭, 高文成, 温建康, 武彪, 刘学. 锌的生物浸出技术现状及研究进展[J]. 工程科学学报, 2020, 42(6): 693-703. doi: 10.13374/j.issn2095-9389.2019.09.24.001
LI Xu, GAO Wen-cheng, WEN Jian-kang, WU Biao, LIU Xue. Technology status and research progress of zinc bioleaching[J]. Chinese Journal of Engineering, 2020, 42(6): 693-703. doi: 10.13374/j.issn2095-9389.2019.09.24.001
Citation: LI Xu, GAO Wen-cheng, WEN Jian-kang, WU Biao, LIU Xue. Technology status and research progress of zinc bioleaching[J]. Chinese Journal of Engineering, 2020, 42(6): 693-703. doi: 10.13374/j.issn2095-9389.2019.09.24.001

锌的生物浸出技术现状及研究进展

doi: 10.13374/j.issn2095-9389.2019.09.24.001
基金项目: 云南省科技厅重点研发计划资助项目(2018IB027)
详细信息
    通讯作者:

    E-mail:kang3412@126.com

  • 中图分类号: TF18

Technology status and research progress of zinc bioleaching

More Information
  • 摘要: 锌是现代工业所必需的有色金属,属于很重要的战略资源,其在世界所有金属产量中排名第四,仅次于铁、铝和铜。随着低品位难处理锌资源的种类和产量的不断增加,以及湿法冶金技术的不断发展,锌的生物浸出技术得到了研究人员的广泛关注,并展示出了良好的潜在应用前景。本文首先较为详细的介绍了含锌资源的矿物特征,并对其生物可浸性进行了分析。其次,对目前锌的生物浸出体系,所用浸矿菌种,浸出过程所涉及的电化学、热力学、动力学以及浸出机理进行了归纳总结;接着,对锌的生物浸出技术现状和工艺新进展进行了阐述。最后,展望了锌的生物浸出工艺的发展趋势及后续的研究热点。研究表明高效浸锌菌种的选育驯化、与之相匹配的工艺及装备研发,是锌的生物浸出当今研究热点及未来发展方向。
  • 图  1  闪锌矿(ZnS)的晶格结构

    Figure  1.  Lattice structure of sphalerite (ZnS)

    图  2  铜绿假单胞菌电镜图(a)和琼脂平板菌落特征(b)

    Figure  2.  Electron microscopy image of Pseudomonas aeruginosa (a) and agar plate colony characteristics (b)

    图  3  生物活性剂鼠李糖脂单糖(a)和多糖(b)分子结构

    Figure  3.  Molecular structure of the monosaccharides (a) and polysaccharides (b) of rhamnolipids as bioactive agents

    图  4  ISR工艺示意图

    Figure  4.  Diagram of the ISR process

    表  1  锌的生物浸出特点

    Table  1.   Bioleaching characteristics of zinc

    TypesZinc resourcesBacterial speciesExtractantCharacteristic
    Sulfide oreSphalerite, marmatite, wurtziteInorganic acidophilic bacteriaFe3+,H2SO4Short leaching cycle and high efficiency
    Zinc-containing polymetallic
    sulfide ore
    Inorganic acidophilic bacteriaFe3+,H2SO4Selective priority leaching
    Smithsonite, zincite, sillizonite, heteropolarHeterotrophic alkaline bacteriaOrganic acidNeed external energy substrate
    Non-sulfide oreElectronic waste such as zinc-manganese batteriesInorganic acidophilic bacteria, heterotrophic alkaline bacteriaFe3+,H2SO4, Organic acidNeed external energy substrate and low efficiency
    Lead-zinc smelting slagInorganic acidophilic bacteria, heterotrophic alkaline bacteriaFe3+,H2SO4, Organic acidHigh acid consumption and high leaching rate
    Zinc-containing sludge and wastewaterInorganic acidophilic bacteria, heterotrophic alkaline bacteriaFe3+,H2SO4, Organic acidDirect decomposition of organic matter and sulfide
    下载: 导出CSV

    表  2  部分常用浸矿细菌特征

    Table  2.   Some frequently used bioleaching bacteria characteristics

    TypesBioleaching bacteriaGrowth environmentOptimum growth pH valueEnergy substanceOxidation products
    Inorganic acidophilic bacteriaAcidithiobacillus ferrooxidansAcidic2.5Fe2+,${{\rm{S}}_2}{\rm{O}}_3^{2 - }$,S0,Sulfide oreFe3+,${\rm{SO}}_4^{2 - }$
    Leptospirillum ferrooxidansAcidic1.5‒3.0Fe2+Fe3+-
    Acidimirobium ferrooxidansAcidic2.0Fe2+Fe3+
    Sulfobacillus thermosul fidooxidansAcidic2.0Fe2+,${{\rm{S}}_2}{\rm{O}}_3^{2 - }$,S0,Sulfide oreFe3+,${\rm{SO}}_4^{2 - }$
    Acidithiobacillus thiooxidansAcidic1.5‒3${{\rm{S}}_2}{\rm{O}}_3^{2 - }$,S0,Sulfide ore
    ThioalklimicrobiumAlkaline9.5‒10.0${{\rm{S}}_2}{\rm{O}}_3^{2 - }$, S0,Sulfide ore${\rm{SO}}_4^{2 - }$
    Thiobacillus novellusAlkaline7.8‒9.0${{\rm{S}}_2}{\rm{O}}_3^{2 - }$,S0,Sulfide ore${\rm{SO}}_4^{2 - }$
    ThioalkalivibrioAlkaline10.0‒10.2${{\rm{S}}_2}{\rm{O}}_3^{2 - }$,Sulfide oreS0
    Thiobacillus versutusAlkaline8.0‒9.0${{\rm{S}}_2}{\rm{O}}_3^{2 - }$,Sulfide ore${\rm{SO}}_4^{2 - }$
    Alpha proteobacteriumAlkaline8.5‒8.8${{\rm{S}}_2}{\rm{O}}_3^{2 - }$,Sulfide oreS0
    Pseudomonas stutzeriAlkaline7.5‒8.0Sulfide ore${\rm{SO}}_4^{2 - }$
    Heterotrophic alkaline bacteriaPseudomonas aeruginosaAlkalineC6H12O6,Sulfide oreC2H4O2、${\rm{SO}}_4^{2 - }$
    Arthrobacter oxydansAlkalineOrganic compoundC2H2O4、C3H6O3
    Microbacterium sp.AlkalineOrganic compoundC2H2O4、C6H12O7
    Bacillus megateriumAlkaline4.0‒7.5Organic compoundC6H8O7
    Promicromonospora sp.AlkalineOrganic compoundC6H12O7
    下载: 导出CSV

    表  3  硫化矿物溶解的部分动力学模型[43]

    Table  3.   Partial kinetic model for the dissolution of sulfide minerals[43]

    NumberModelTypes
    1${K_{\rm{t}}} = 1 - {(1 - X)^{\frac{2}{3}}}$Hybrid control model of shrin-king core model (diffusion control; chemical reaction control)
    2${K_{\rm{t}}} = {[1 - {(1 - X)^{1/3}}]^2}$Product layer diffusion model
    3${K_{\rm{t}}} = - \ln (1 - X)$Hybrid control model (surface reaction control, sulfur layer diffusion control)
    4${K_{\rm{t}}} = 1 - \dfrac{2}{3}X - {\left( {1 - X} \right)^{{\frac{1}{3}}}}$Diffusion of porous product layer based on shrinking core model
    5${K_{\rm{t}}} = \dfrac{1}{3}\ln (1 - X) + [{(1 - X)^{ - \frac{1}{3}}} - 1]$Interface transfer and product layer diffusion
    6${K_{\rm{t}}} = 1 - 3{\left( {1 - X} \right)^{\frac{2}{3}}} + 2\left( {1 - X} \right)$Diffusion of H+ in the product layer of the shrinking core model
    7${K_{\rm{t}}} = 1 - {(1 - 0.45X)^{1/3}}$Surface chemical reaction diffusion of shrinking core model
    下载: 导出CSV
  • [1] 石绍渊, 张广积, 赵月峰, 等. 硫化锌矿的生物浸出. 国外金属矿选矿, 2002(02):12

    Shi S Y, Zhang G J, Zhao Y F, et al. Bioleaching of zinc sulfide ore. Metallic Ore Dressing Abroad, 2002(02): 12
    [2] 骆任. W-1抑制剂对内蒙古某浮选铅精矿降锌选矿试验研究. 湖南有色金属, 2018, 34(2):15

    Luo R. Experimental study of W-1 inhibitor on zinc flotation of a flotation lead concentrate in Inner Mongolia. Hunan Nonferrous Met, 2018, 34(2): 15
    [3] 孙志健. 青海某难选铅锌矿选矿试验研究. 有色金属(选矿部分), 2016(5):22

    Sun Z J. Processing research refractory lead-zinc ore in Qinghai. Nonferrous Met (Miner Process Sect), 2016(5): 22
    [4] 刘晓, 张宇, 王楠, 等. 我国铅锌矿资源现状及其发展对策研究. 中国矿业, 2015, 24(增刊1): 6

    Liu X, Zhang Y, Wang N, et al. Pb‒Zn metal resources situation and suggestion for Pb‒Zn metals industry development in China. China Min Mag, 2015, 24(Suppl 1): 6
    [5] 温建康. 生物冶金的现状与发展. 中国有色金属, 2008(10):74

    Wen J K. Current status and development of biometallurgy. China Nonferrous Met, 2008(10): 74
    [6] 李广泽, 王洪江, 吴爱祥, 等. 生物浸矿技术研究现状. 湿法冶金, 2014, 33(02):82

    Li G Z, Wang H J, Wu A X, et al. Research status on bioleaching of ores. Hydrometallurgy China, 2014, 33(02): 82
    [7] 王建雄, 罗印敏, 沈立俊. 某铅锌矿石工艺矿物学研究. 湖南有色金属, 2003, 19(5):4

    Wang J X, Luo Y M, Shen L J. Craft mineralogy research of lead-zinc ore somewhere. Hunan Nonferrous Met, 2003, 19(5): 4
    [8] 童雄, 何剑, 饶峰, 等. 云南都龙高铁闪锌矿的活化试验研究. 矿冶工程, 2006, 26(4):19

    Tong X, He J, Rao F, et al. Experimental study on activation of high iron-bearing marmatite. Min Metall Eng, 2006, 26(4): 19
    [9] 单连军. 内蒙古敖包吐铅锌矿矿石工艺矿物学研究及矿石难选因素分析. 有色矿冶, 2018, 34(5):19

    Shan L J. Mineralogical study on the refractory factor of one Pb‒Zn ore originated from Inner Mongolia Aobaotu and discussion on the refractory factors. Non-ferrous Min Metall, 2018, 34(5): 19
    [10] Saririchi T, Azad R R, Arabian D, et al. On the optimization of sphalerite bioleaching; the inspection of intermittent irrigation, type of agglomeration, feed formulation and their interactions on the bioleaching of low-grade zinc sulfide ores. Chem Eng J, 2012, 187: 217 doi: 10.1016/j.cej.2010.10.013
    [11] 王蕾, 夏金兰, 朱泓睿, 等. 微生物−矿物相互作用及界面显微分析研究进展. 微生物学通报, 2017, 44(3):716

    Wang L, Xia J L, Zhu H R, et al. Progress on research of microbe−mineral interaction and interfacial micro-analysis. Microbiol China, 2017, 44(3): 716
    [12] Brierley C L. Biohydrometallurgical prospects. Hydrometallurgy, 2010, 104(3-4): 324 doi: 10.1016/j.hydromet.2010.03.021
    [13] Mehrabani J V, Shafaei S Z, Noaparast M, et al. Bioleaching of sphalerite sample from Kooshk lead–zinc tailing dam. Trans Nonferrous Met Soc China, 2013, 23(12): 3763 doi: 10.1016/S1003-6326(13)62927-1
    [14] 武彪, 温建康, 刘学, 等. 一种浸矿菌及低品位硫化锌矿的选择性生物浸出工艺: 中国专利, 200810227389.8. 2008-11-27

    Wu B, Wen J K, Liu X, et al. A Selective Bioleaching Process for Leaching Bacteria and Low-grade Zinc Sulfide Ore: China Patent, 200810227389.8. 2008-11-27
    [15] 李珊珊. 锌冶炼废渣资源化利用的研究[学位论文]. 长沙: 中南大学, 2012

    Li S S. Study on the Resources and Utilization of Smelting Waste of Zinc[Dissertation]. Changsha: Central South University, 2012
    [16] Sorokin D Y, Kuenen J G. Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiol Rev, 2005, 29(4): 685 doi: 10.1016/j.femsre.2004.10.005
    [17] Sorokin D Y, Cherepanov A, De Vries S, et al. Identification of cytochrome c oxidase in the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium ‘Thioalcalomicrobium aerophilum’ strain AL 3. FEMS Microbiol Lett, 1999, 179(1): 91 doi: 10.1111/j.1574-6968.1999.tb08713.x
    [18] Willscher S, Bosecker K. Studies on the leaching behaviour of heterotrophic microorganisms isolated from an alkaline slag dump. Hydrometallurgy, 2003, 71(1-2): 257 doi: 10.1016/S0304-386X(03)00164-6
    [19] 熊有为, 王洪江, 吴爱祥, 等. 碱性微生物浸矿研究现状及发展趋势. 湿法冶金, 2012, 31(4):199

    Xiong Y W, Wang H J, Wu A X, et al. Research status and development trend on bioleaching with alkaline microbes. Hydrometallurgy, 2012, 31(4): 199
    [20] Shabani M A, Irannajad M, Meshkini M, et al. Investigations on bioleaching of copper and zinc oxide ores. Trans Indian Inst Met, 2019, 72(3): 609 doi: 10.1007/s12666-018-1509-3
    [21] Y·科西尼, 周廷熙, 李长根. 嗜热嗜酸A.b.酸杆菌浸出硫化锌精矿. 国外金属矿选矿, 2000(9):31

    Cocini Y, Zhou T X, Li C G. Leaching of zinc sulfide concentrate by thermophilic acidophilic A.b. acid bacteria. Metallic Ore Dress Abroad, 2000(9): 31
    [22] 李啊林, 黄松涛, 温建康, 等. 中等嗜热菌浸出德兴黄铜矿的试验研究. 金属矿山, 2011(11):78

    Li A L, Huang S T, Wen J K, et al. Research on the bioleaching of chalcopyrite from Dexing copper mine by moderate thermophiles. Met Mine, 2011(11): 78
    [23] 刘伟芳, 王洪江, 张旭, 等. 某硫化铜矿尾矿碱性细菌浸出试验研究. 矿冶工程, 2011, 31(3):89

    Liu W F, Wang H J, Zhang X, et al. Experimental study on bioleaching of copper sulfide tailings under alkaline conditions. Min Metall Eng, 2011, 31(3): 89
    [24] Willscher S, Bosecker K. Studies on the leaching behaviour of heterotrophic microorganisms isolated from an alkaline slag dump. Hydrometallurgy, 2003, 71(1): 257
    [25] Shabani M A, Irannajad M, Meshkini M, et al. Investigations on bioleaching of copper and zinc oxide ores. Trans Indian Inst Met, 2019, 72(3): 609 doi: 10.1007/s12666-018-1509-3
    [26] Richter C, Kalka H, Myers E, et al. Constraints of bioleaching in in-situ recovery applications. Hydrometallurgy, 2018, 178: 209 doi: 10.1016/j.hydromet.2018.04.008
    [27] Schippers A, Hedrich S, Vasters J, et al. Biomining: metal recovery from ores with microorganisms//Geobiotechnology I. Heidelberg: Springer, 2013
    [28] Fomchenko N V, Muravyov M I. Selective leaching of zinc from copper-zinc concentrate. Appl Biochem Microbiol, 2017, 53(1): 73 doi: 10.1134/S0003683817010197
    [29] Lizama H M, Fairweather M J, Dai Z, et al. How does bioleaching start? Hydrometallurgy, 2003, 69(1-3): 109 doi: 10.1016/S0304-386X(03)00028-8
    [30] Fowler T A, Crundwell F K. The role of Thiobacillus ferrooxidans, in the bacterial leaching of zinc sulphide. Process Metall, 1999, 9: 273 doi: 10.1016/S1572-4409(99)80027-3
    [31] Vera M, Schippers A, Sand W. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A. Appl Microbiol Biotechnol, 2013, 97(17): 7529 doi: 10.1007/s00253-013-4954-2
    [32] Schippers A, Sand W. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol, 1999, 65(1): 319 doi: 10.1128/AEM.65.1.319-321.1999
    [33] Zhao L, Wang Y, Jin L, et al. Decomposition of hydrogen sulfide in non-thermal plasma aided by supported CdS and ZnS semiconductors. Green Chem, 2013, 15(6): 1509 doi: 10.1039/c3gc00092c
    [34] Chen S, Qiu G Z, Qin W Q, et al. Bioleaching of sphalerite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans cultured in 9K medium modified with pyrrhotite. J Cent South Univ Technol, 2008, 15(04): 79
    [35] Schippers A. Biogeochemistry of metal sulfide oxidation in mining environments, sediments, and soils. Spe Paper Geolog Soc Am, 2004, 379: 49
    [36] Rohwerder T, Sand W. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology, 2003, 149(7): 1699 doi: 10.1099/mic.0.26212-0
    [37] Balci N, Mayer B, Shanks Ⅲ W C, et al. Oxygen and sulfur isotope systematics of sulfate produced during abiotic and bacterial oxidation of sphalerite and elemental sulfur. Geochim Cosmochim Acta, 2012, 77: 335 doi: 10.1016/j.gca.2011.10.022
    [38] Gu G H, Sun X J, Hu K T, et al. Electrochemical oxidation behavior of pyrite bioleaching by Acidthiobacillus ferrooxidans. Trans Nonferrous Met Soc China, 2012, 22(5): 1250 doi: 10.1016/S1003-6326(11)61312-5
    [39] Jyothi N, Sudha K N, Natarajan K A. Electrochemical aspects of selective bioleaching of sphalerite and chalcopyrite from mixed sulphides. Int J Miner Process, 1989, 27(3-4): 189 doi: 10.1016/0301-7516(89)90064-1
    [40] Ahonen L, Tuovinen O H. Silver catalysis of the bacterial leaching of chalcopyrite-containing ore material in column reactors. Miner Eng, 1990, 3(5): 437 doi: 10.1016/0892-6875(90)90037-C
    [41] K·A·兰特拉金, 王军. 硫化矿生物浸出电化学. 国外金属矿选矿, 1997(2):44

    Lantrajin K A, Wang J. Bioleaching electrochemistry of sulfide ores. Metallic Ore Dress Abroad, 1997(2): 44
    [42] 张英杰, 杨显万. 硫化矿生物浸出过程的热力学. 贵金属, 1998, 19(3):26

    Zhang Y J, Yang X W. Thermodynamics during bioleaching processes of sulfide-ores. Precious Met, 1998, 19(3): 26
    [43] Ghassa S, Noaparast M, Shafaei S Z, et al. A study on the zinc sulfide dissolution kinetics with biological and chemical ferric reagents. Hydrometallurgy, 2017, 171: 362 doi: 10.1016/j.hydromet.2017.06.012
    [44] Conić V T, Vujasinović M M R, Trujić V K, et al. Copper, zinc, and iron bioleaching from polymetallic sulphide concentrate. Trans Nonferrous Met Soc China, 2014, 24(11): 3688 doi: 10.1016/S1003-6326(14)63516-0
    [45] 周秀丽, 郑越, 王淑华, 等. 电子垃圾生物浸出的电化学强化机制. 环境化学, 2017, 36(10):15

    Zhou X L, Zheng Y, Wang S H, et al. Mechanisms of bioleaching electrochemstry-enhanced of electronic wastes. Environmentally Chemistry, 2017, 36(10): 15
    [46] Sajjad W, Zheng G D, Din G, et al. Metals extraction from sulfide ores with microorganisms: the bioleaching technology and recent developments. Trans Indian Inst Met, 2019, 72(3): 559 doi: 10.1007/s12666-018-1516-4
    [47] Kumar C G, Mamidyala S K, Sujitha P, et al. Evaluation of critical nutritional parameters and their significance in the production of rhamnolipid biosurfactants from Pseudomonas aeruginosa BS-161R. Biotechnol Prog, 2012, 28(6): 1507 doi: 10.1002/btpr.1634
    [48] Pirôllo M P S, Mariano A P, Lovaglio R B, et al. Biosurfactant synthesis by Pseudomonas aeruginosa LBI isolated from a hydrocarbon-contaminated site. J Appl Microbiol, 2008, 105(5): 1484 doi: 10.1111/j.1365-2672.2008.03893.x
    [49] Diaz M A, De Ranson I U, Dorta B, et al. Metal removal from contaminated soils through bioleaching with oxidizing bacteria and rhamnolipid biosurfactants. Soil Sediment Contamin Int J, 2015, 24(1): 16 doi: 10.1080/15320383.2014.907239
    [50] Yang Z H, Zhang Z, Chai L Y, et al. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90. J Hazard Mater, 2016, 301: 145 doi: 10.1016/j.jhazmat.2015.08.047
    [51] Zhu Y, Zeng G M, Zhang P Y, et al. Feasibility of bioleaching combined with Fenton-like reaction to remove heavy metals from sewage sludge. Bioresour Technol, 2013, 142: 530 doi: 10.1016/j.biortech.2013.05.070
    [52] Charikinya E, Bradshaw S, Becker M. Characterising and quantifying microwave induced damage in coarse sphalerite ore particles. Miner Eng, 2015, 82: 14 doi: 10.1016/j.mineng.2015.07.020
    [53] Natarajan G, Ting Y P. Gold biorecovery from e-waste: an improved strategy through spent medium leaching with pH modification. Chemosphere, 2015, 136: 232 doi: 10.1016/j.chemosphere.2015.05.046
    [54] 牛志睿, 李彤, 苏沉, 等. 废旧锌锰电池生物淋滤-水热法制备纳米锰锌铁氧体. 环境科学学报, 2017, 37(9):3356

    Niu Z R, Li T, Su C, et al. Preparation of Mn-Zn ferrite from spent Zn‒Mn batteries using bioleaching liquor as precursor. Acta Sci Circum, 2017, 37(9): 3356
    [55] Kaksonen A H, Perrot F, Morris C, et al. Evaluation of submerged bio-oxidation concept for refractory gold ores. Hydrometallurgy, 2014, 141: 117 doi: 10.1016/j.hydromet.2013.10.012
    [56] Haschke M, Ahmadian J, Zeidler L, et al. In-situ recovery of critical technology elements. Procedia Eng, 2016, 138: 248 doi: 10.1016/j.proeng.2016.02.082
    [57] Pakostova E, Grail B M, Johnson D B. Indirect oxidative bioleaching of a polymetallic black schist sulfide ore. Miner Eng, 2017, 106: 102 doi: 10.1016/j.mineng.2016.08.028
    [58] 孙建之, 陈勃伟, 温建康, 等. 镍矿湿法冶金技术应用进展及研究展望. 中国有色金属学报, 2018, 28(2):356 doi: 10.1016/S1003-6326(18)64669-2

    Sun J Z, Chen B W, Wen J K, et al. Application and research progresses of hydrometallurgy technology for nickel ore. Chin J Nonferrous Met, 2018, 28(2): 356 doi: 10.1016/S1003-6326(18)64669-2
    [59] Riekkola-Vanhanen M. Talvivaara Sotkamo mine—bioleaching of a polymetallic nickel ore in subarctic climate. Nova Biotechnol, 2010, 10(1): 7
    [60] 傅开彬, 宁燕, 王进明, 等. 四川里伍铜矿尾矿生物浸出液中回收铜、锌的研究. 西南科技大学学报, 2017, 32(1):10

    Fu K B, Ning Y, Wang J M, et al. Recovering copper and zinc from bioleaching lixivium of Liwu Copper Mine tailings by process of solvent extraction-precipitation. J Southwest Univ Sci Technol, 2017, 32(1): 10
    [61] 孙传尧,周俊武,贾木欣,等. 基因矿物加工工程研究. 有色金属(选矿部分), 2018(1):1

    Sun C Y, Zhou J W, Jia M X, et al. Research on genetic mineral processing engineering. Nonferrous Met (Miner Process Sect), 2018(1): 1
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  747
  • HTML全文浏览量:  490
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-24
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回