• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3D打印锂离子电池正极的制备及性能

左文婧 屈银虎 祁攀虎 符寒光 王钰凡 高浩斐 张红

左文婧, 屈银虎, 祁攀虎, 符寒光, 王钰凡, 高浩斐, 张红. 3D打印锂离子电池正极的制备及性能[J]. 工程科学学报, 2020, 42(3): 358-364. doi: 10.13374/j.issn2095-9389.2019.10.09.006
引用本文: 左文婧, 屈银虎, 祁攀虎, 符寒光, 王钰凡, 高浩斐, 张红. 3D打印锂离子电池正极的制备及性能[J]. 工程科学学报, 2020, 42(3): 358-364. doi: 10.13374/j.issn2095-9389.2019.10.09.006
ZUO Wen-jing, QU Yin-hu, QI Pan-hu, FU Han-guang, WANG Yu-fan, GAO Hao-fei, ZHANG Hong. Preparation and performance of 3D-printed positive electrode for lithium-ion battery[J]. Chinese Journal of Engineering, 2020, 42(3): 358-364. doi: 10.13374/j.issn2095-9389.2019.10.09.006
Citation: ZUO Wen-jing, QU Yin-hu, QI Pan-hu, FU Han-guang, WANG Yu-fan, GAO Hao-fei, ZHANG Hong. Preparation and performance of 3D-printed positive electrode for lithium-ion battery[J]. Chinese Journal of Engineering, 2020, 42(3): 358-364. doi: 10.13374/j.issn2095-9389.2019.10.09.006

3D打印锂离子电池正极的制备及性能

doi: 10.13374/j.issn2095-9389.2019.10.09.006
基金项目: 陕西省科学技术研究发展计划−工业攻关资助项目(2013K09-33);西安市科技计划资助项目(CXY1517(3),2017074CG/RC03/XAGC002,2017074CG/RC03/XAGC007);陕西省重点研发计划资助项目(2018GY-130)
详细信息
    通讯作者:

    E-mail:quyinhu@xpu.edu.cn

  • 中图分类号: TM504

Preparation and performance of 3D-printed positive electrode for lithium-ion battery

More Information
  • 摘要: 采用挤出式3D打印技术制备锂离子电池电极,选取三元镍钴锰酸锂(LiNi0.5Co0.2Mn0.3O2)作为正极活性材料,以去离子水、羟乙基纤维素和其他添加剂为溶剂来制备性能稳定且适合3D打印技术的锂离子电池正极墨水,利用流变仪、X射线衍射仪、电池测试仪、ANSYS模拟等探究了增稠剂种类和含量、墨水黏度、打印工艺等对墨水流变性质和可打印性能的影响。结果表明:选取羟乙基纤维素/羟丙基纤维素质量比为1∶1混合且质量分数为3%时,所制备的墨水黏度为20.26 Pa·s,此时墨水具有较好的流变性,打印过程出墨均匀,打印电极光滑平整,满足后期墨水的可打印性要求,经模拟分析,墨水黏度对墨水流动性影响明显;电极材料经超声分散、打印、烧结等过程后未造成原有晶体结构的改变;电极首次充放电容量分别为226.5和119.4 mA·h·g−1,经过20次循环后,电池充放电容量的变化率减小并趋于稳定,3D打印电极表现出良好的循环稳定性。
  • 图  1  三元镍钴锰酸锂正极制备流程图

    Figure  1.  Flow chart of the preparation of the ternary lithium nickel–cobalt–manganese oxide material positive electrode

    图  2  4种不同增稠剂所制备的正极墨水打印形貌图. (a)聚丙烯酸钠;(b)聚丙烯酰胺;(c)羟丙基纤维素;(d)羟乙基纤维素

    Figure  2.  Printed topographies of positive inks prepared using four different thickeners: (a) sodium polyacrylate; (b) polyacrylamide; (c) hydroxypropyl cellulose; (d) hydroxyethyl cellulose

    图  3  羟乙基/羟丙基纤维素混合配比所制备的正极墨水打印形貌图

    Figure  3.  Printed topography of positive ink prepared using hydroxyethyl/hydroxypropyl cellulose

    图  4  不同增稠剂所制备正极打印墨水的表观黏度-剪切速率曲线

    Figure  4.  Apparent viscosity–shear rate curves of positive printing ink prepared using different thickeners

    图  5  以羟乙基/羟丙基纤维素为增稠剂的正极打印墨水的模量-应力曲线

    Figure  5.  Modulus–stress curves of positive printing ink prepared using a hydroxyethyl/hydroxypropyl mixed thickener

    图  6  不同质量分数增稠剂的打印电极形貌图. (a)1%;(b)3%;(c)5%

    Figure  6.  Printed electrode topographies of inks with different mass fractions of thickeners: (a) 1%; (b) 3%; (c) 5%

    图  7  墨水在不同黏度下速度分布云图. (a)31.39 Pa·s;(b)27.58 Pa·s;(c)24.64 Pa·s;(d)23.58 Pa·s;(e)22.73 Pa·s;(f)20.26 Pa·s

    Figure  7.  Speed distributions of inks with different viscosities: (a) 31.39 Pa·s;(b) 27.58 Pa·s;(c) 24.64 Pa·s;(d) 23.58 Pa·s;(e) 22.73 Pa·s;(f) 20.26 Pa·s

    图  8  X射线衍射图谱

    Figure  8.  XRD patterns

    图  9  3D打印三元材料电极的循环性能曲线

    Figure  9.  Cycle performances of 3D-printed ternary material electrode

    图  10  不同电流密度下LNCM523打印电极的倍率性能曲线

    Figure  10.  Magnification performances of LNCM523 printed electrode at different current densities

    表  1  不同增稠剂的具体参数

    Table  1.   Specific parameters of different thickeners

    Thickener typeAppearanceMolecular weightDecomposition temperature /℃Density/(g·mL−1
    Hydroxyethyl celluloseWhite to light yellow fibrous or powdery solid144673288−2900.75
    Hydroxypropyl celluloseWhite or light yellow solid powder1000000.5
    PolyacrylamideWhite powder> 5 million>3001.189
    Sodium polyacrylateWhite powder8−10 million1.32
    下载: 导出CSV

    表  2  不同增稠剂含量的正极打印墨水黏度测试

    Table  2.   Viscosities of positive printing inks with different thickener contents

    Thickener mass fraction/%Rotating speed/
    (r·min−1)
    Torque/
    %
    Viscosity/
    (Pa·s)
    11071.812.36
    21084.315.49
    31085.120.26
    41086.223.60
    51087.826.56
    下载: 导出CSV
  • [1] 谢元, 李俊华, 王佳, 等. 锂离子电池三元正极材料的研究进展. 无机盐工业, 2018, 50(7):18

    Xie Y, Li J H, Wang J, et al. Research progress in ternary cathode material of lithium ion batteries. Inorg Chem Ind, 2018, 50(7): 18
    [2] 王鹏博, 郑俊超. 锂离子电池的发展现状及展望. 自然杂志, 2017, 39(4):283 doi: 10.3969/j.issn.0253-9608.2017.04.006

    Wang P B, Zheng J C. Development status and prospects of lithium ion batteries. Nat Mag, 2017, 39(4): 283 doi: 10.3969/j.issn.0253-9608.2017.04.006
    [3] 吴英强, 倪欢, 孟德超, 等. 高压镍钴锰三元正极材料研究进展及应用前景展望. 新材料产业, 2015(9):18 doi: 10.3969/j.issn.1008-892X.2015.09.005

    Wu Y Q, Ni H, Meng D C, et al. Research progress and application prospect of high voltage nickel-cobalt-manganese ternary cathode materials. Adv Mater Ind, 2015(9): 18 doi: 10.3969/j.issn.1008-892X.2015.09.005
    [4] 魏致慧. 我国锂离子电池正极材料发展现状及趋势. 甘肃冶金, 2017, 39(4):29 doi: 10.3969/j.issn.1672-4461.2017.04.008

    Wei Z M. Development status and trend of cathode materials for lithium ion batteries in China. Gansu Metall, 2017, 39(4): 29 doi: 10.3969/j.issn.1672-4461.2017.04.008
    [5] 孙玉城. 镍钴锰酸锂三元正极材料的研究与应用. 无机盐工业, 2014, 46(1):1 doi: 10.3969/j.issn.1006-4990.2014.01.001

    Sun Y C. Research and application of Li(Mn, Co, Ni)O2 cathode material. Inorg Chem Ind, 2014, 46(1): 1 doi: 10.3969/j.issn.1006-4990.2014.01.001
    [6] 郭红霞, 乔月纯, 穆培振. 锂离子电池正极材料研究与应用进展. 无机盐工业, 2016, 48(3):5

    Guo H X, Qiao Y C, Mu P Z. Progress in research and application of cathode materials for lithium-ion battery. Inorg Chem Ind, 2016, 48(3): 5
    [7] Woo S G, Kim J H, Kim H R, et al. Failure mechanism analysis of LiNi0.88Co0.09Mn0.03O2 cathodes in Li-ion full cells. J Electroanal Chem, 2017, 799: 315 doi: 10.1016/j.jelechem.2017.06.034
    [8] 俞会根, 王恒, 盛军. 三元正极材料Li[Ni-Co-Mn]O2的研究进展. 电源技术, 2014, 38(9):1749 doi: 10.3969/j.issn.1002-087X.2014.09.050

    Yu H G, Wang H, Sheng J. Recent progress in cobalt/nickel/manganese oxides as positive electrode materials. Chin J Power Sources, 2014, 38(9): 1749 doi: 10.3969/j.issn.1002-087X.2014.09.050
    [9] Longo R C, Kong F, Liang C P, et al. Transition metal ordering optimization for high-reversible capacity positive electrode materials in the Li–Ni–Co–Mn pseudoquaternary system. J Phys Chem C, 2016, 120(16): 8540 doi: 10.1021/acs.jpcc.6b02240
    [10] Yadav S, Yamasani P, Kumar S. Experimental studies on a micro power generator using thermo-electric modules mounted on a micro-combustor. Energy Convers Manage, 2015, 99: 1 doi: 10.1016/j.enconman.2015.04.019
    [11] Chou S K, Yang W M, Chua K J, et al. Development of micro power generators–a review. Appl Energy, 2011, 88(1): 1 doi: 10.1016/j.apenergy.2010.07.010
    [12] 黄荣根. 对3D打印技术的思考. 科技创新与应用, 2014(20):40

    Huang R G. Thinking about 3D printing technology. Technol Innov Appl, 2014(20): 40
    [13] 高艳芳, 豆贺, 佟晗, 等. 3D打印技术的发展现状及应用前景. 中国科技信息, 2017(12):30

    Gao Y F, Dou H, Tong H, et al. Development status and application prospect of 3D printing technology. China Sci Technol Inform, 2017(12): 30
    [14] 张自强. 基于FDM技术3D打印机的设计与研究[学位论文]. 长春: 长春工业大学, 2015

    Zhang Z Q. Design and Research of 3D Printer based on FDM[Dissertation]. Changchun: Changchun University of Technology, 2015
    [15] Tumbleston J R, Shirvanyants D, Ermoshkin N, et al. Continuous liquid interface production of 3D objects. Science, 2015, 347(6228): 1349 doi: 10.1126/science.aaa2397
    [16] Ober T J, Foresti D, Lewis J A. Active mixing of complex fluids at the microscale. Proc Natl Acad Sci, 2015, 112(40): 12293 doi: 10.1073/pnas.1509224112
    [17] Lewis J A. Direct ink writing of 3D functional materials. Adv Funct Mater, 2006, 16(17): 2193 doi: 10.1002/adfm.200600434
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  532
  • HTML全文浏览量:  357
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-09
  • 刊出日期:  2020-03-01

目录

    /

    返回文章
    返回