李翠平, 颜丙恒, 王少勇, 侯贺子, 陈格仲. 时间–速率双因素下全尾砂膏体的屈服应力易变行为[J]. 工程科学学报, 2020, 42(10): 1308-1317. DOI: 10.13374/j.issn2095-9389.2019.10.19.002
引用本文: 李翠平, 颜丙恒, 王少勇, 侯贺子, 陈格仲. 时间–速率双因素下全尾砂膏体的屈服应力易变行为[J]. 工程科学学报, 2020, 42(10): 1308-1317. DOI: 10.13374/j.issn2095-9389.2019.10.19.002
LI Cui-ping, YAN Bing-heng, WANG Shao-yong, HOU He-zi, CHEN Ge-zhong. Variability behavior of yield stress for unclassified tailings pasted under measurement time‒velocity double factors[J]. Chinese Journal of Engineering, 2020, 42(10): 1308-1317. DOI: 10.13374/j.issn2095-9389.2019.10.19.002
Citation: LI Cui-ping, YAN Bing-heng, WANG Shao-yong, HOU He-zi, CHEN Ge-zhong. Variability behavior of yield stress for unclassified tailings pasted under measurement time‒velocity double factors[J]. Chinese Journal of Engineering, 2020, 42(10): 1308-1317. DOI: 10.13374/j.issn2095-9389.2019.10.19.002

时间–速率双因素下全尾砂膏体的屈服应力易变行为

Variability behavior of yield stress for unclassified tailings pasted under measurement time‒velocity double factors

  • 摘要: 以往对全尾砂膏体屈服应力的研究局限于理想屈服应力流体框架内,认为一定材料配比条件下,膏体的屈服应力是确定的,即认为屈服应力是膏体料浆固有的一个物理属性值。通过开展不同质量分数全尾砂膏体屈服应力测量实验,分析了测量速率与测量时间对不同浓度膏体屈服应力的影响,发现屈服应力值的大小与测量过程相关。对比分析峰值屈服应力、动态屈服应力、静态屈服应力,发现全尾砂膏体屈服应力随测量时间–测量速率在一定条件下的变化规律,即峰值屈服应力、静态屈服应力正比于膏体的测量速率,动态屈服应力反比于测量时间,以变异系数Cv评价料浆屈服应力的离散程度,其中74%质量分数膏体动态屈服应力变异系数最大,Cvmax=27.07%,而66%质量分数膏体静态屈服应力变异系数最小,Cvmin=2.33%。进而从细观层面分析了膏体屈服过程中颗粒间作用力、颗粒网络结构随测量时间–测量速率的变化规律,解释了全尾砂膏体屈服应力易变性机理。

     

    Abstract: The rake torque of deep cone thickener, pipeline resistance, and paste accumulation slope were important technological parameters for the efficient paste backfill process, which are to be solved or optimized for the practical application in mines. The yield stress of paste was considered as an important rheological parameter for solving these technological parameters. In the past, the research of yield stress of the materials for unclassified tailings paste was limited to the concept and analysis of yield stress fluids used. For example, the fluids such as Bingham fluid, H–B fluid, and Casson fluid were commonly used. When the shear stress of the paste was less than yield stress, the slurry paste remained stationary, and the paste started to flow when shear stress was greater than yield stress. So it concluded that the yield stress was an important parameter in the transition from solid state to flow state. It was considered that yield stress of paste with a certain ratio of material had a unique value, which was regarded as inherent physical property of paste. At present, most rheological studies of concentrated suspensions had found that the evolution of particle structure in suspensions resulted in thixotropy, which increased the difficulty of measuring yield stress of suspensions. Considering the unclassified tailings as specific experimental sample, experiments with different mass fractions paste were carried out and yield stresses were measured. The influence of measuring velocity and measuring time on yield stress of paste was analyzed. It is found that the yield stress value is correlated with measuring protocol. By comparing and analyzing peak yield stress, dynamic yield stress, and static yield stress, the variations in yield stress of paste with measuring time and measuring velocity under certain conditions were obtained. It is observed that the peak yield stress and static yield stress are proportional to measuring velocity of paste, and the dynamic yield stress is inversely proportional to measuring time. The coefficients of variation of degree of yield stress with discreet features are evaluated. The dynamic yield stress of 74% mass fraction paste has the largest Cv, which is 27.07%, while the static yield stress of 66% mass fraction paste has the smallest Cv, which is 2.33%. Further, the variation of particle interaction force and particle network structure with measuring velocity and measuring time during paste yielding was analyzed from the mesoscopic level. The mechanism of variation in yield stress of paste was elucidated based upon the analysis and the results and the necessary values of parameters were obtained for the efficient backfill process.

     

/

返回文章
返回