• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低浓度拜耳赤泥充填材料制备及水化机理

刘娟红 周在波 吴爱祥 王贻明

刘娟红, 周在波, 吴爱祥, 王贻明. 低浓度拜耳赤泥充填材料制备及水化机理[J]. 工程科学学报, 2020, 42(11): 1457-1464. doi: 10.13374/j.issn2095-9389.2019.11.25.001
引用本文: 刘娟红, 周在波, 吴爱祥, 王贻明. 低浓度拜耳赤泥充填材料制备及水化机理[J]. 工程科学学报, 2020, 42(11): 1457-1464. doi: 10.13374/j.issn2095-9389.2019.11.25.001
LIU Juan-hong, ZHOU Zai-bo, WU Ai-xiang, WANG Yi-ming. Preparation and hydration mechanism of low concentration Bayer red mud filling materials[J]. Chinese Journal of Engineering, 2020, 42(11): 1457-1464. doi: 10.13374/j.issn2095-9389.2019.11.25.001
Citation: LIU Juan-hong, ZHOU Zai-bo, WU Ai-xiang, WANG Yi-ming. Preparation and hydration mechanism of low concentration Bayer red mud filling materials[J]. Chinese Journal of Engineering, 2020, 42(11): 1457-1464. doi: 10.13374/j.issn2095-9389.2019.11.25.001

低浓度拜耳赤泥充填材料制备及水化机理

doi: 10.13374/j.issn2095-9389.2019.11.25.001
基金项目: 国家自然科学基金重点资助项目(51834001)
详细信息
    通讯作者:

    E-mail:zhouzaibo@126.com

  • 中图分类号: TB321

Preparation and hydration mechanism of low concentration Bayer red mud filling materials

More Information
  • 摘要: 针对矿山充填中拜耳法赤泥利用率较低或低浓度赤泥充填材料存在强度低、泌水量高、易收缩等问题,研究粉煤灰添加比例、脱硫石膏、石灰及激发剂对赤泥充填材料早期强度及体积稳定性的影响,采用扫描电子显微镜-能谱仪(SEM-EDS)和X射线衍射(XRD)分析手段探讨赤泥基充填材料的水化机理。结果表明,脱硫石膏促进钙矾石的生成,石灰促进粉煤灰火山灰效应,激发剂可以加快赤泥−粉煤灰水化反应进程,三者协同作用提高赤泥充填体强度。充填材料28 d抗压强度3.35 MPa,且初始及60 min流动度在200 mm以上。微观实验表明,硬化体水化产物为钙矾石、硬柱石、硅铝酸盐凝胶类矿物,水化产物通过填充孔隙,提高浆体强度。赤泥基充填材料固体废弃物利用率达到92%,无泌水,无沉缩,具有较高的经济价值和环保价值。
  • 图  1  赤泥和粉煤灰矿物分析。1—加藤石;2—钙霞石;3—碳硅钙石;4—斜硅钙石;5—石英;6—斜方钙沸石;7—重硅钙石;8—铝酸三钙;9—硬石膏

    Figure  1.  Mineral analysis of red mud and fly ash: 1—katoite;2—cancrinite;3—tilleyite;4—belite;5—quartz;6—gismondine;7—reinhardbraunsite;8—tricalcium aluminate;9—anhydrite

    图  2  赤泥–粉煤灰体系不同龄期抗压强度

    Figure  2.  Different age compressive strength of red mud‒fly ash system

    图  3  脱硫石膏对强度及流动度影响

    Figure  3.  Effect of desulfurized gypsum on strength and fluidity

    图  4  石灰对强度和流动度影响

    Figure  4.  Effect of lime on strength and fluidity

    图  5  不同激发剂掺量对充填材料影响分析

    Figure  5.  Effect of different excitagent contents on filling materials

    图  6  不同龄期X射线衍射图。a—氢氧化钙;b—二水石膏;c—钙矾石;d—硬柱石;其他矿物标注同图1

    Figure  6.  XRD patterns of the hydrated pastes at different hydration days: a—calcium hydroxide; b—dihydrate gypsum; c—ettringite, d—lawsonite; other minerals are labeled as shown in Fig.1

    图  7  不同龄期扫描电镜图。(a)G2L2J0养护3 d;(b)G2L2J0养护28 d;(c)G2L2J2养护3 d;(d)G2L2J2养护28 d

    Figure  7.  Different ages of scanning electron microscopy: (a) G2L2J0 curing for 3 d; (b) G2L2J0 curing for 28 d; (c) G2L2J2 curing for 3 d; (d) G2L2J2 curing for 28 d

    图  8  不同点位能谱分析

    Figure  8.  Different point positions of spectral analysis

    表  1  各材料化学组成分析

    Table  1.   Chemical composition analysis of each material %

    MaterialsSiO2Al2O3Fe2O3K2OMgOCaOMnONa2OTiO2SO3P2O5
    Red mud28.7529.968.010.860.9419.910.054.615.030.940.37
    Fly ash44.4237.934.790.470.295.800.020.161.963.400.43
    Lime2.750.960.880.376.0587.870.860.08
    Desulphurization gypsum14.5512.381.760.290.7829.140.500.7039.360.12
    下载: 导出CSV

    表  2  自流型充填料浆各组分配比

    Table  2.   Designed proportion of self-flowing filling slurry

    NumberRed mud∶fly ash∶desulfurization
    gypsum∶lime∶activator
    Solid content / %
    R3F73∶7∶/∶/∶/60
    R4F64∶6∶/∶/∶/60
    R5F55∶5∶/∶/∶/60
    R6F46∶4∶/∶/∶/60
    G1L2J04∶6∶0.6∶0.9∶/58
    G2L2J04∶6∶0.9∶0.9∶/58
    G3L2J04∶6∶1.2∶0.9∶/58
    G2L1J04∶6∶0.9∶0.7∶/58
    G2L3J04∶6∶0.9∶1.1∶/58
    G2L2J14∶6∶0.9∶0.9∶0.158
    G2L2J24∶6∶0.9∶0.9∶0.258
    G2L2J34∶6∶0.9∶0.9∶0.358
    下载: 导出CSV
  • [1] Khairul M A, Zanganeh J, Moghtaderi B. The composition, recycling and utilization of Bayer red mud. Resour Conserv Recycl, 2019, 141: 483 doi: 10.1016/j.resconrec.2018.11.006
    [2] 刘晓明, 唐彬文, 尹海峰, 等. 赤泥–煤矸石基公路路面基层材料的耐久与环境性能. 工程科学学报, 2018, 40(4):438

    Liu X M, Tang B W, Yin H F, et al. Durability and environmental performance of Bayer red mud–coal gangue-based road base material. Chin J Eng, 2018, 40(4): 438
    [3] Liu C L, Ma S H, Zheng S L, et al. Combined treatment of red mud and coal fly ash by a hydro-chemical process. Hydrometallurgy, 2018, 175: 224 doi: 10.1016/j.hydromet.2017.11.005
    [4] Liu Z B, Li H X. Metallurgical process for valuable elements recovery from red mud—A review. Hydrometallurgy, 2015, 155: 29 doi: 10.1016/j.hydromet.2015.03.018
    [5] Wang L, Chen L, Tsang D C W, et al. Mechanistic insights into red mud, blast furnace slag, or metakaolin-assisted stabilization/solidification of arsenic-contaminated sediment. Environ Int, 2019, 133: 105247 doi: 10.1016/j.envint.2019.105247
    [6] 柳晓, 韩跃新, 何发钰, 等. 赤泥的危害及其综合利用研究现状. 金属矿山, 2018, 47(11):7

    Liu X, Han Y X, He F Y, et al. Research status on hazards and comprehensive utilization of red mud. Met Mine, 2018, 47(11): 7
    [7] Liu S H, Guan X M, Zhang S S, et al. Sintered bayer red mud based ceramic bricks: Microstructure evolution and alkalis immobilization mechanism. Ceram Int, 2017, 43(15): 13004 doi: 10.1016/j.ceramint.2017.07.036
    [8] Lu G Z, Zhang T A, Ma L N, et al. Utilization of Bayer red mud by a calcification–carbonation method using calcium aluminate hydrate as a calcium source. Hydrometallurgy, 2019, 188: 248 doi: 10.1016/j.hydromet.2019.05.018
    [9] 刘英, 倪文, 黄晓燕, 等. 拜耳法低铁赤泥在电石渣-脱硫石膏体系中的水化硬化特性. 材料导报, 2016, 30(14):120

    Liu Y, Ni W, Huang X Y, et al. Characteristics of hydration and hardening red mud of Bayer process in carbide slag-flue desulfurization gypsum system. Mater Rev, 2016, 30(14): 120
    [10] Li Y C, Min X B, Ke Y, et al. Preparation of red mud-based geopolymer materials from MSWI fly ash and red mud by mechanical activation. Waste Manage, 2019, 83: 202 doi: 10.1016/j.wasman.2018.11.019
    [11] Hu W, Nie Q K, Huang B S, et al. Mechanical and microstructural characterization of geopolymers derived from red mud and fly ashes. J Clean Prod, 2018, 186: 799 doi: 10.1016/j.jclepro.2018.03.086
    [12] 高术杰, 倪文, 祝丽萍, 等. 脱硫石膏对赤泥–矿渣胶结充填料强度性能的影响. 中南大学学报: 自然科学版, 2013, 44(6):2259

    Gao S J, Ni W, Zhu L P, et al. Effect of gypsum on strength performance of cemented backfilling materials of red mud-slag system. J Cent South Univ Sci Technol, 2013, 44(6): 2259
    [13] 陈蛟龙, 张娜, 李恒, 等. 赤泥基似膏体充填材料水化特性研究. 工程科学学报, 2017, 39(11):1640

    Chen J L, Zhang N, Li H, et al. Hydration characteristics of red-mud based paste-like backfill material. Chin J Eng, 2017, 39(11): 1640
    [14] 吴爱祥, 杨莹, 程海勇, 等. 中国膏体技术发展现状与趋势. 工程科学学报, 2018, 40(5):517

    Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517
    [15] Hou C, Zhu W C, Yan B X, et al. Influence of binder content on temperature and internal strain evolution of early age cemented tailings backfill. Construct Build Mater, 2018, 189: 585 doi: 10.1016/j.conbuildmat.2018.09.032
    [16] Liu J H, Wu R D, Wu A X, et al. Bleeding characteristics and improving mechanism of self-flowing tailings filling slurry with low concentration. Minerals, 2017, 7(8): 131 doi: 10.3390/min7080131
    [17] Nath S K, Kumar S. Role of particle fineness on engineering properties and microstructure of fly ash derived geopolymer. Construct Build Mater, 2020, 233: 117294 doi: 10.1016/j.conbuildmat.2019.117294
    [18] Li Z F, Zhang J, Li S C, et al. Effect of different gypsums on the workability and mechanical properties of red mud–slag based grouting materials. J Clean Prod, 2020, 245: 118759 doi: 10.1016/j.jclepro.2019.118759
    [19] 大连理工大学无机化学教研室. 无机化学. 5版. 北京: 高等教育出版社, 2006

    Department of inorganic chemistry, Dalian University of Technology. Inorganic Chemistry. 5th Ed. Beijing: Higher Education Press, 2006
    [20] Zhou X X, Shen J M. Micromorphology and microstructure of coal fly ash and furnace bottom slag based light-weight geopolymer. Construct Build Mater, 2020, 242: 118168 doi: 10.1016/j.conbuildmat.2020.118168
    [21] 肖力光, 张洪磊. 新型复合早强剂对混凝土(砂浆)力学性能的影响及机理分析. 硅酸盐通报, 2018, 37(7):2115

    Xiao L G, Zhang H L. Influence of new composite early strength agent on mechanical properties of concrete(mortar) and its mechanism analysis. Bull Chin Ceram Soc, 2018, 37(7): 2115
    [22] 邱轶兵, 王庆平. NaSO4激发粉煤灰火山灰活性研究. 材料导报, 2013, 27(12):121 doi: 10.3969/j.issn.1005-023X.2013.12.029

    Qiu Y B, Wang Q P. Study on the pozzolanic activity of fly ash activated by NaSO4. Mater Rev, 2013, 27(12): 121 doi: 10.3969/j.issn.1005-023X.2013.12.029
    [23] 刘鹏飞, 兰明章, 项斌峰, 等. 羟丙基甲基纤维素醚对机喷水泥砂浆性能的影响. 新型建筑材料, 2016, 43(7):49 doi: 10.3969/j.issn.1001-702X.2016.07.013

    Liu P F, Lan M Z, Xiang B F, et al. Influence of hydroxypropyl methyl cellulose ether on properties of machine spraying mortar. New Build Mater, 2016, 43(7): 49 doi: 10.3969/j.issn.1001-702X.2016.07.013
    [24] 姜关照, 吴爱祥, 王贻明, 等. 复合激发剂对铜炉渣活性影响及充填材料制备. 工程科学学报, 2017, 39(9):1305

    Jiang G Z, Wu A X, Wang Y M, et al. Effect of compound activator on copper slag activity and preparation of filling materials. Chin J Eng, 2017, 39(9): 1305
    [25] Keeley P M, Rowson N A, Johnson T P, et al. The effect of the extent of polymerization of a slag structure on the strength of alkali-activated slag binders. Int J Miner Process, 2017, 164: 37 doi: 10.1016/j.minpro.2017.05.007
    [26] Kwan S, La Rosa-Thompson J, Grutzeck M W. Structure and phase relations of aluminum-substituted calcium silicate hydrate. J Am Ceram Soc, 1996, 79(4): 967 doi: 10.1111/j.1151-2916.1996.tb08533.x
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1037
  • HTML全文浏览量:  762
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-25
  • 刊出日期:  2020-11-25

目录

    /

    返回文章
    返回