• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

感应加热温度对冷−热轧制成形钛/钢复合板界面的影响

白于良 李晶琨 刘雪峰 王怀柳 代广霖

白于良, 李晶琨, 刘雪峰, 王怀柳, 代广霖. 感应加热温度对冷−热轧制成形钛/钢复合板界面的影响[J]. 工程科学学报, 2020, 42(12): 1639-1646. doi: 10.13374/j.issn2095-9389.2019.12.11.001
引用本文: 白于良, 李晶琨, 刘雪峰, 王怀柳, 代广霖. 感应加热温度对冷−热轧制成形钛/钢复合板界面的影响[J]. 工程科学学报, 2020, 42(12): 1639-1646. doi: 10.13374/j.issn2095-9389.2019.12.11.001
BAI Yu-liang, LI Jing-kun, LIU Xue-feng, WANG Huai-liu, DAI Guang-lin. Effect of induction heating temperature on the interface of cold−hot-rolled titanium/steel composite plates[J]. Chinese Journal of Engineering, 2020, 42(12): 1639-1646. doi: 10.13374/j.issn2095-9389.2019.12.11.001
Citation: BAI Yu-liang, LI Jing-kun, LIU Xue-feng, WANG Huai-liu, DAI Guang-lin. Effect of induction heating temperature on the interface of cold−hot-rolled titanium/steel composite plates[J]. Chinese Journal of Engineering, 2020, 42(12): 1639-1646. doi: 10.13374/j.issn2095-9389.2019.12.11.001

感应加热温度对冷−热轧制成形钛/钢复合板界面的影响

doi: 10.13374/j.issn2095-9389.2019.12.11.001
基金项目: 国家重点实验室自主研究资助项目(2014Z-05)
详细信息
    通讯作者:

    E-mail: liuxuefengbj@163.com

  • 中图分类号: TG335.81

Effect of induction heating temperature on the interface of cold−hot-rolled titanium/steel composite plates

More Information
  • 摘要: 对钛/钢组坯进行冷轧预复合成形,将钛/钢预复合板感应加热至热轧温度后单道次热轧成形制备了钛/钢复合板,研究了感应加热温度对钛/钢复合板的界面组织和界面结合性能的影响。结果表明,冷−热轧制复合法制备的钛/钢复合板的界面结合紧密,没有孔洞和间隙。钛/钢复合板由于感应加热和热轧的时间较短(<5 s),钛/钢界面仅有少量硬化层碎块,没有金属间化合物析出。钛/钢复合板的界面Ti和Fe元素扩散层宽度随感应加热温度增大而增大,950 ℃时界面扩散层宽度达到8 μm。在感应加热温度为750 ~ 950 ℃的条件下,钛/钢复合板的界面结合良好。
  • 图  1  冷–热轧制成形钛/钢复合板工艺流程示意图

    Figure  1.  Process diagram of cold–hot roll bonded titanium/steel composite plates

    图  2  弯曲实验示意图

    Figure  2.  Schematic of the three-point bending test

    图  3  不同感应加热温度下制备的钛/钢复合板的界面组织形貌。(a) 750 ℃;(b) 950 ℃

    Figure  3.  Interfacial microstructure of titanium/steel composite plates prepared at different induction heating temperatures: (a) 750 ℃; (b) 950 ℃

    图  4  钛/钢复合板界面的X射线衍射物相图谱

    Figure  4.  XRD phase patterns of the longitudinal section of titanium/steel composite plates for different induction heating temperatures

    图  5  不同感应加热温度下制备的钛/钢复合板界面附近的硬度分布

    Figure  5.  Hardness distribution near the interface of titanium/steel composite plates prepared at different induction heating temperatures

    图  6  不同感应加热温度下制备的钛/钢复合板界面处的显微硬度压痕形貌。(a)750 ℃;(b)850 ℃;(c)950 ℃

    Figure  6.  Interfacial hardness indentation morphology of titanium/steel composite plates prepared at different induction heating temperatures: (a) 750 ℃; (b) 850 ℃; (c) 950 ℃

    图  7  不同感应加热温度下制备的钛/钢复合板的界面元素扩散距离

    Figure  7.  Interfacial element diffusion distances of titanium steel composite plates prepared at different induction heating temperatures

    图  8  不同感应加热温度下制备的钛/钢复合板的裂纹萌生时的弯曲角

    Figure  8.  Bending angles during the crack initiation of titanium steel composite plates prepared at different induction heating temperatures

    图  9  不同感应加热温度下制备的钛/钢复合板的界面裂纹萌生形貌。(a)750 ℃;(b)850 ℃;(c)950 ℃

    Figure  9.  Interface morphology during the crack initiation of titanium/steel composite plates prepared at different induction heating temperatures: (a) 750 ℃; (b) 850 ℃; (c) 950 ℃

    图  10  不同感应加热温度下制备的钛/钢复合板剥离面形貌。(a,b)750 ℃;(c,d)850 ℃;(e,f)950 ℃

    Figure  10.  Peeling surface microstructure of titanium/steel composite plates prepared at different induction heating temperatures: (a, b) 750 ℃; (c, d) 850 ℃; (e, f) 950 ℃

    表  1  原材料的化学成分(质量分数)

    Table  1.   Chemical composition of experimental TA2 and Q235 %

    TA2Q235
    FeCNHOOthersTiCSiMnSPFe
    <0.30<0.08<0.03<0.015<0.25<0.4Bal.0.12–0.200.19–0.300.30–0.70≤0.45≤0.045Bal.
    下载: 导出CSV

    表  2  图10中各点的元素含量(原子数分数)

    Table  2.   Element composition of each point in Fig. 10 %

    PointTiFeC
    183.571.7314.7
    24.1395.87
    381.970.6517.38
    40.8361.1738.01
    592.041.516.54
    60.4988.8310.68
    下载: 导出CSV
  • [1] 闫力. 钛钢复合板的特点及应用领域. 中国钛业, 2011(3):12

    Yan L. Behaviotsard applications of Ti/steel composite sheets. China Tit Ind, 2011(3): 12
    [2] 胡杰, 谢荣, 杜训柏. 钛钢复合板加工技术及其在船海工程中的应用. 江苏船舶, 2016, 33(6):6 doi: 10.3969/j.issn.1001-5388.2016.06.002

    Hu J, Xie R, Du X B. Processing technology of titanium steel clad plate and its application in ship and ocean engineering. Jiangsu Ship, 2016, 33(6): 6 doi: 10.3969/j.issn.1001-5388.2016.06.002
    [3] Prasanthi T N, Ravikirana C S, Saroja S. Explosive cladding and post-weld heat treatment of mild steel and titanium. Mater Des, 2016, 93: 180 doi: 10.1016/j.matdes.2015.12.120
    [4] 刘继雄, 赵爱民, 江海涛, 等. TA2-Q235B爆炸复合板钢侧组织特征. 北京科技大学学报, 2012, 34(6):671

    Liu J X, Zhao A M, Jiang H T, et al. Microstructure features of the steel side in TA2-Q235B explosive clad plates. J Univ Sci Technol Beijing, 2012, 34(6): 671
    [5] Xie M X, Zhang L J, Zhang G F, et al. Microstructure and mechanical properties of CP-Ti/X65 bimetallic sheets fabricated by explosive welding and hot rolling. Mater Des, 2015, 87: 181 doi: 10.1016/j.matdes.2015.08.021
    [6] Jiang H T, Yan X Q, Liu J X, et al. Effect of heat treatment on microstructure and mechanical property of Ti-steel explosive-rolling clad plate. Trans Nonferrous Met Soc China, 2014, 24(3): 697 doi: 10.1016/S1003-6326(14)63113-7
    [7] Kundu S, Sam S, Mishra B, et al. Diffusion bonding of microduplex stainless steel and Ti alloy with and without interlayer: interface microstructure and strength properties. Metall Mater Trans A, 2014, 45(1): 371 doi: 10.1007/s11661-013-1977-3
    [8] Song T F, Jiang X S, Shao Z Y, et al. Microstructure and mechanical properties of vacuum diffusion bonded joints between Ti–6Al–4V titanium alloy and AISI316L stainless steel using Cu/Nb multi-interlayer. Vacuum, 2017, 145: 68 doi: 10.1016/j.vacuum.2017.08.017
    [9] Yu C, Xiao H, Yu H, et al. Mechanical properties and interfacial structure of hot-roll bonding TA2/Q235B plate using DT4 interlayer. Mater Sci Eng A, 2017, 695: 120 doi: 10.1016/j.msea.2017.03.118
    [10] 马志新, 胡捷, 李德富, 等. 层状金属复合板的研究和生产现状. 稀有金属, 2003, 27(6):799 doi: 10.3969/j.issn.0258-7076.2003.06.030

    Ma Z X, Hu J, Li D F, et al. Overview of research and manufacture of layer-metal composite plate. Chin J Rare Met, 2003, 27(6): 799 doi: 10.3969/j.issn.0258-7076.2003.06.030
    [11] Chai X Y, Pan T, Chai F, et al. Interlayer engineering for titanium clad steel by hot roll bonding. J Iron Steel Res Int, 2018, 25(7): 739 doi: 10.1007/s42243-018-0106-3
    [12] Liu J G, Cai W C, Liu L, et al. Investigation of interfacial structure and mechanical properties of titanium clad steel sheets prepared by a brazing-rolling process. Mater Sci Eng A, 2017, 703: 386 doi: 10.1016/j.msea.2017.06.095
    [13] 王敬忠, 颜学柏, 王韦琪, 等. 轧制钛−钢复合板工艺综述. 材料导报, 2005, 19(4):61 doi: 10.3321/j.issn:1005-023X.2005.04.017

    Wang J Z, Yan X B, Wang W Q, et al. Summarization of the rolling Ti-steel composite plates process. Mater Rev, 2005, 19(4): 61 doi: 10.3321/j.issn:1005-023X.2005.04.017
    [14] Luo Z A, Wang G L, Xie G M, et al. Interfacial microstructure and properties of a vacuum hot roll-bonded titanium-stainless steel clad plate with a niobium interlayer. Acta Metall Sin (Engl Lett), 2013, 26(6): 754 doi: 10.1007/s40195-013-0283-9
    [15] Yu C, Qi Z C, Yu H, et al. Microstructural and mechanical properties of hot roll bonded titanium alloy/low carbon steel plate. J Mater Eng Perform, 2018, 27(4): 1664 doi: 10.1007/s11665-018-3279-9
    [16] Lee M K, Lee J G, Choi Y H, et al. Interlayer engineering for dissimilar bonding of titanium to stainless steel. Mater Lett, 2010, 64(9): 1105 doi: 10.1016/j.matlet.2010.02.024
    [17] Ke S R, Xu X H, Xiang Z D. Feasibility of cladding Ti to carbon steel by diffusion bonding followed by hot-rolling // Proceedings of the 5th International Conference on Advanced Design and Manufacturing Engineering. Shenzhen, 2015: 1961
    [18] 江海涛, 阎晓倩, 刘继雄, 等. 钛−钢爆炸复合板热处理过程中的扩散行为及数学模型. 稀有金属材料与工程, 2015, 44(4):972

    Jiang H T, Yan X Q, Liu J X, et al. Diffusion behavior and mathematical model of Ti-steel explosive clad plate during heat treatment. Rare Met Mater Eng, 2015, 44(4): 972
    [19] 柴希阳, 师仲然, 柴峰, 等. 加热温度对轧制钛/钢复合板组织与性能的影响. 稀有金属材料与工程, 2019, 48(8):2701

    Chai X Y, Shi Z R, Chai F, et al. Effect of heating temperature on microstructure and mechanical properties of titanium clad steel by hot roll bonding. Rare Met Mater Eng, 2019, 48(8): 2701
    [20] Yang D H, Luo Z A, Xie G M, et al. Effect of vacuum level on microstructure and mechanical properties of titanium-steel vacuum roll clad plates. J Iron Steel Res Int, 2018, 25(1): 72 doi: 10.1007/s42243-017-0009-8
    [21] 余伟, 张蕾, 陈银莉, 等. 轧制温度对TA1/Q345复合板性能的影响. 北京科技大学学报, 2013, 35(1):97

    Yu W, Zhang L, Chen Y L, et al. Effect of rolling temperature on the properties of TA1/Q345 composite plates. J Univ Sci Technol Beijing, 2013, 35(1): 97
    [22] 徐卫, 朱明, 郭胜利, 等. 钛−铝复合板界面组织及其对加工性能的影响. 稀有金属, 2011, 35(3):342 doi: 10.3969/j.issn.0258-7076.2011.03.005

    Xu W, Zhu M, Guo S L, et al. Interfaces of titanium-aluminum clad sheet and affecting to processing performance. Chin J Rare Met, 2011, 35(3): 342 doi: 10.3969/j.issn.0258-7076.2011.03.005
    [23] Kundu S, Chatterjee S. Diffusion bonding between commercially pure titanium and micro-duplex stainless steel. Mater Sci Eng A, 2008, 480(1-2): 316 doi: 10.1016/j.msea.2007.07.033
    [24] 江海涛, 吴波, 张韵, 等. 高应变速率下钛−钢复合板界面组织特征及变形机制. 工程科学学报, 2017, 39(7):1070

    Jiang H T, Wu B, Zhang Y, et al. Interfacial microstructure and deformation mechanism of Ti-steel clad plate under high strain rate. Chin J Eng, 2017, 39(7): 1070
    [25] Deng Y Q, Sheng G M, Xu C. Evaluation of the microstructure and mechanical properties of diffusion bonded joints of titanium to stainless steel with a pure silver interlayer. Mater Des, 2013, 46: 84 doi: 10.1016/j.matdes.2012.09.058
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1003
  • HTML全文浏览量:  405
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-11
  • 刊出日期:  2020-12-25

目录

    /

    返回文章
    返回