• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低合金结构钢腐蚀的影响因素及其耐蚀性判据

赵起越 范益 范恩点 赵柏杰 黄运华 程学群 李晓刚

赵起越, 范益, 范恩点, 赵柏杰, 黄运华, 程学群, 李晓刚. 低合金结构钢腐蚀的影响因素及其耐蚀性判据[J]. 工程科学学报, 2021, 43(2): 255-262. doi: 10.13374/j.issn2095-9389.2020.01.10.002
引用本文: 赵起越, 范益, 范恩点, 赵柏杰, 黄运华, 程学群, 李晓刚. 低合金结构钢腐蚀的影响因素及其耐蚀性判据[J]. 工程科学学报, 2021, 43(2): 255-262. doi: 10.13374/j.issn2095-9389.2020.01.10.002
ZHAO Qi-yue, FAN Yi, FAN En-dian, ZHAO Bai-jie, HUANG Yun-hua, CHENG Xue-qun, LI Xiao-gang. Influence factors and corrosion resistance criterion of low-alloy structural steel[J]. Chinese Journal of Engineering, 2021, 43(2): 255-262. doi: 10.13374/j.issn2095-9389.2020.01.10.002
Citation: ZHAO Qi-yue, FAN Yi, FAN En-dian, ZHAO Bai-jie, HUANG Yun-hua, CHENG Xue-qun, LI Xiao-gang. Influence factors and corrosion resistance criterion of low-alloy structural steel[J]. Chinese Journal of Engineering, 2021, 43(2): 255-262. doi: 10.13374/j.issn2095-9389.2020.01.10.002

低合金结构钢腐蚀的影响因素及其耐蚀性判据

doi: 10.13374/j.issn2095-9389.2020.01.10.002
基金项目: 国家重点研发计划资助项目(2016YFB0300604);国家自然科学基金资助项目(51971033)
详细信息
    通讯作者:

    E-mail: huangyh@mater.ustb.edu.cn

  • 中图分类号: TG172.3

Influence factors and corrosion resistance criterion of low-alloy structural steel

More Information
  • 摘要: 通过对不同厂家或产线生产的相近成分和显微组织的8种低合金工程结构钢样品进行中性盐雾加速腐蚀试验,结合成分测试、微观组织分析、腐蚀产物分析及数据统计与计算拟合等方法,提出了评价低合金结构钢耐蚀性的综合耐蚀指数及其包含钢材成分、夹杂物、组织及晶粒度等多因素的数学表达式。研究结果表明,低合金工程结构钢的耐蚀性除与传统的耐蚀指数I相关外,还受钢中夹杂物、显微组织、晶粒度等多种材料因素的耦合影响,其影响程度按从大到小排序依次为耐蚀合金元素所决定的耐蚀指数I、夹杂物总量、珠光体含量和晶粒度级别。综合耐蚀指数Y可作为比耐蚀指数I指数更有效的低合金钢耐蚀性判据,具有重要的工程应用价值。
  • 图  1  8种试验钢样品盐雾试验后的宏观形貌。(a)1#;(b)2#;(c)3#;(d)4#;(e)5#;(f)6#;(g)7#;(h)8#

    Figure  1.  Macromorphologies of the steel samples after the salt spray test: (a) 1#; (b) 2#; (c) 3#; (d) 4#; (e) 5#; (f) 6#; (g)7#; (h) 8#

    图  2  8种试验钢样品锈层X射线衍射图谱

    Figure  2.  XRD patterns of the corrosion products formed on the steel samples

    图  3  8种试验钢样品除锈后的微观形貌。(a)1#;(b)2#;(c)3#;(d)4#;(e)5#;(f)6#;(g)7#;(h)8#

    Figure  3.  Micromorphologies of the steel samples after rust removal: (a) 1#; (b) 2#; (c) 3#; (d) 4#; (e) 5#; (f) 6#; (g) 7#; (h) 8#

    图  4  8种试验钢样品金相组织。(a)1#;(b)2#;(c)3#;(d)4#;(e)5#;(f)6#;(g)7#;(h)8#

    Figure  4.  Microstructures of the steel samples: (a) 1#; (b) 2#; (c) 3#; (d) 4#; (e) 5#; (f) 6#; (g) 7#; (h) 8#

    图  5  8种试验钢样品夹杂物形貌。(a)1#;(b)2#;(c)3#;(d)4#;(e)5#;(f)6#;(g)7#;(h)8#

    Figure  5.  Morphologies of the inclusions in the steel samples: (a) 1#; (b) 2#; (c) 3#; (d) 4#; (e) 5#; (f) 6#; (g) 7#; (h) 8#

    图  6  8种试验钢盐雾试验后的失重率与耐蚀性指数、珠光体面积百分比、晶粒度级别和夹杂物面积百分比的关系

    Figure  6.  Relationship between the mass loss ratio and the corrosion resistance index, area percentage of pearlite, grain grade, and area percentage of inclusions

    表  1  试验钢样品的化学成分(质量分数)

    Table  1.   Chemical composition of the steel samples %

    SampleCSiMnPSCrNiCuVTiNbFe
    1#0.120.191.430.0140.0030.0330.0100.0150.0050.0190.001Bal
    2#0.180.201.280.0150.0030.0280.0130.0240.0050.0350.001Bal
    3#0.170.241.170.0150.0020.0350.0100.0140.0040.0100.010Bal
    4#0.180.240.910.0100.0040.0260.0150.0190.0030.00240.009Bal
    5#0.160.191.210.0110.0020.0430.0450.0200.0040.0100.001Bal
    6#0.140.151.480.0100.0060.0160.0060.0080.0050.0150.002Bal
    7#0.180.230.910.0140.0070.0300.0110.0120.0030.00280.010Bal
    8#0.180.230.920.0140.0080.0300.0110.0120.0030.00280.010Bal
    下载: 导出CSV

    表  2  八种试验钢样品的耐蚀指数I

    Table  2.   Corrosion resistance index of the steel samples

    1#2#3#4#5#6#7#8#
    0.991.241.051.101.200.640.970.97
    下载: 导出CSV

    表  3  8种试验钢样品的质量损失率

    Table  3.   Mass loss ratio of the steel samples %

    1#2#3#4#5#6#7#8#
    1.112.022.802.843.003.023.063.29
    下载: 导出CSV

    表  4  八种钢样品晶粒度级别及组织含量

    Table  4.   Grain size and percentage of pearlite/ferrite

    SampleGrain size grade/
    Grain diameter/μm
    Area percentage
    of pearlite/%
    Area percentage
    of ferrite/%
    1#9/1720.1379.87
    2#8.5/2024.2275.78
    3#9.5/1322.2967.72
    4#10/1224.7375.27
    5#8.5/1938.8261.18
    6#10.5/1037.2962.71
    7#9/1623.1476.86
    8#9/1538.4961.51
    下载: 导出CSV

    表  5  8种试验钢样品夹杂物评级及夹杂物所占面积

    Table  5.   Inclusion grade and percentage of the inclusion area of the steel samples

    SampleInclusion gradeArea percentage of inclusion /%
    1#C 0.5e+D 10.05630
    2#C 0.5e+D 0.50.04055
    3#C 1e+D 1e0.12769
    4#A 0.5+C 1e+D 10.11457
    5#C 0.5+D 10.05512
    6#C 1+D 1.50.08360
    7#C 1+D 0.50.08123
    8#A 0.5+C 1+D 0.50.07664
    下载: 导出CSV
  • [1] 李晓刚. 耐蚀低合金结构钢. 北京: 冶金工业出版社, 2017

    Li X G. Corrosion-resistant Low Alloy Steel. Beijing: Metallurgical Industry Press, 2017
    [2] Zhang S Q, Wan J F, Zhao Q Y, et al. Dual role of nanosized NbC precipitates in hydrogen embrittlement susceptibility of lath martensitic steel. Corros Sci, 2020, 164: 108345 doi: 10.1016/j.corsci.2019.108345
    [3] Zhang D Z, Gao X H, Du Y, et al. Effect of microstructure refinement on hydrogen-induced damage behavior of low alloy high strength steel for flexible riser. Mater Sci Eng A, 2019, 765: 138278
    [4] 李秀程, 李学达, 王学林, 等. 低合金钢焊接热影响区的微观组织和韧性研究进展. 工程科学学报, 2017, 39(5):643

    Li X C, Li X D, Wang X L, et al. Research progress on microstructures and toughness of welding heat-affected zone in low-alloy steel. Chin J Eng, 2017, 39(5): 643
    [5] 马博, 彭艳, 刘云飞, 等. 低合金钢Q345B动态再结晶动力学模型. 材料热处理学报, 2010, 31(4):141

    Ma B, Peng Y, Liu Y F, et al. Dynamic recrystallization kinetics model of low-alloy steel Q345B. Trans Mater Heat Treat, 2010, 31(4): 141
    [6] 殷胜, 朱红丹. 屈服强度750 MPa低合金钢高强度集装箱用钢的开发. 特殊钢, 2019, 40(1):16 doi: 10.3969/j.issn.1003-8620.2019.01.005

    Yin S, Zhu H D. Development of yield strength 750 MPa HSLA steel for container. Spec Steel, 2019, 40(1): 16 doi: 10.3969/j.issn.1003-8620.2019.01.005
    [7] Ma H C, Chen L H, Zhao J B, et al. Effect of prior austenite grain boundaries on corrosion fatigue behaviors of E690 high strength low alloy steel in simulated marine atmosphere. Mater Sci Eng A, 2020, 773: 138884 doi: 10.1016/j.msea.2019.138884
    [8] Wang Z H, Wu J S, Li J, et al. Effects of niobium on the mechanical properties and corrosion behavior of simulated weld HAZ of HSLA steel. Metall Mater Trans A, 2018, 49(1): 187 doi: 10.1007/s11661-017-4391-4
    [9] 程远鹏, 白羽, 李自力, 等. 集输管道CO2/油/水环境中X65钢的腐蚀特征. 工程科学学报, 2018, 40(5):594

    Cheng Y P, Bai Y, Li Z L, et al. Corrosion characteristics of X65 steel in CO2/oil/water environment of gathering pipeline. Chin J Eng, 2018, 40(5): 594
    [10] 孙永伟, 钟玉平, 王灵水, 等. 低合金高强度钢的耐模拟工业大气腐蚀行为研究. 中国腐蚀与防护学报, 2019, 39(3):274 doi: 10.11902/1005.4537.2018.129

    Sun Y W, Zhong Y P, Wang L S, et al. Corrosion behavior of low-alloy high strength steels in a simulated common SO2-containing atmosphere. J Chin Soc Corros Prot, 2019, 39(3): 274 doi: 10.11902/1005.4537.2018.129
    [11] Sarkar P P, Kumar P, Manna M K, et al. Microstructural influence on the electrochemical corrosion behavior of dual-phase steels in 3.5% NaCl solution. Mater Lett, 2005, 59(19-20): 2488 doi: 10.1016/j.matlet.2005.03.030
    [12] Qiao Q Q, Lu L, Fan E D, et al. Effects of Nb on stress corrosion cracking of high-strength low-alloy steel in simulated seawater. Int J Hydrogen Energy, 2019, 44(51): 27962 doi: 10.1016/j.ijhydene.2019.08.259
    [13] Zhang S Q, Fan E D, Wan J F, et al. Effect of Nb on the hydrogen-induced cracking of high-strength low-alloy steel. Corros Sci, 2018, 139: 83 doi: 10.1016/j.corsci.2018.04.041
    [14] 陈恒, 卢琳. 残余应力对金属材料局部腐蚀行为的影响. 工程科学学报, 2019, 41(7):929

    Chen H, Lu L. Effect of residual stress on localized corrosion behavior of metallic materials. Chin J Eng, 2019, 41(7): 929
    [15] Guo J, Yang S W, Shang C J, et al. Influence of carbon content and microstructure on corrosion behavior of low alloy steels in a Cl- containing environment. Corros Sci, 2009, 51(2): 242 doi: 10.1016/j.corsci.2008.10.025
    [16] Schino A D, Barteri M, Kenny J M. Grain size dependence of mechanical, corrosion and tribological properties of high nitrogen stainless steels. J Mater Sci, 2003, 38(15): 3257 doi: 10.1023/A:1025181820252
    [17] 张峰, 陈惠芬, 柴锋, 等. 夹杂物对Cr‒Ni系高强度钢耐蚀性能的影响. 钢铁研究学报, 2017, 29(11):945

    Zhang F, Chen H F, Chai F, et al. Effect of inclusions on corrosion resistance of Cr‒Ni high-strength steels. J Iron Steel Res, 2017, 29(11): 945
    [18] Liu C, Revilla R I, Zhang D W, et al. Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment. Corros Sci, 2018, 138: 96 doi: 10.1016/j.corsci.2018.04.007
    [19] Liu C, Revilla R I, Liu Z Y, et al. Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel. Corros Sci, 2017, 129: 82 doi: 10.1016/j.corsci.2017.10.001
    [20] American Society for Testing Material. ASTM G101-04(2010) Standard Guide for Estimating the Atmospheric Corrosion Resistance of Low Alloy Steels. Pennsylvania: American Society for Testing and Materials, 2010
    [21] 中华人民共和国国家质量监督检验总局. GB/T 4171—2008耐候结构钢. 北京: 中国标准出版社, 2008

    General Administration of Quality Supervision, Inspection and Quarantine, People’s Republic of China. GB/T 4171—2008 Atmospheric Corrosion Resisting Structural Steel. Beijing: China Standards Press, 2008
    [22] 中华人民共和国国家质量监督检验总局. GB/T 714—2015桥梁用结构钢. 北京: 中国标准出版社, 2015

    General Administration of Quality Supervision, Inspection and Quarantine, People’s Republic of China. GB/T 714—2015 Structural Steel for Bridge. Beijing: China Standards Press, 2015
    [23] Cheng X Q, Jin Z, Liu M, et al. Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres. Corros Sci, 2017, 115: 135 doi: 10.1016/j.corsci.2016.11.016
    [24] 苏宏艺, 魏世丞, 梁义, 等. 静水压与溶解氧耦合作用对低合金高强钢腐蚀电化学行为的影响. 工程科学学报, 2019, 41(8):1029

    Su H Y, Wei S C, Liang Y, et al. Combined effect of hydrostatic pressure and dissolved oxygen on the electrochemical behavior of low-alloy high-strength steel. Chin J Eng, 2019, 41(8): 1029
    [25] Kamimura T, Stratmann M. The influence of chromium on the atmospheric corrosion of steel. Corros Sci, 2001, 43(3): 429 doi: 10.1016/S0010-938X(00)00098-6
    [26] Liu C, Cheng X Q, Dai Z Y, et al. Synergistic effect of Al2O3 inclusion and pearlite on the localized corrosion evolution process of carbon steel in marine environment. Materials, 2018, 11(11): 2277 doi: 10.3390/ma11112277
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  1040
  • HTML全文浏览量:  400
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-10
  • 刊出日期:  2021-02-26

目录

    /

    返回文章
    返回