• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Incoloy825合金电渣重熔低氟渣系设计的热力学研究

巨建涛 杨康帅 棘广恒 安家良 刘诗薇

巨建涛, 杨康帅, 棘广恒, 安家良, 刘诗薇. Incoloy825合金电渣重熔低氟渣系设计的热力学研究[J]. 工程科学学报, 2020, 42(S): 119-127. doi: 10.13374/j.issn2095-9389.2020.03.07.s01
引用本文: 巨建涛, 杨康帅, 棘广恒, 安家良, 刘诗薇. Incoloy825合金电渣重熔低氟渣系设计的热力学研究[J]. 工程科学学报, 2020, 42(S): 119-127. doi: 10.13374/j.issn2095-9389.2020.03.07.s01
JU Jian-tao, YANG Kang-shuai, JI Guang-heng, AN Jia-liang, LIU Shi-wei. Thermodynamic study on design of electroslag remelting slag for Incoloy 825 Alloy[J]. Chinese Journal of Engineering, 2020, 42(S): 119-127. doi: 10.13374/j.issn2095-9389.2020.03.07.s01
Citation: JU Jian-tao, YANG Kang-shuai, JI Guang-heng, AN Jia-liang, LIU Shi-wei. Thermodynamic study on design of electroslag remelting slag for Incoloy 825 Alloy[J]. Chinese Journal of Engineering, 2020, 42(S): 119-127. doi: 10.13374/j.issn2095-9389.2020.03.07.s01

Incoloy825合金电渣重熔低氟渣系设计的热力学研究

doi: 10.13374/j.issn2095-9389.2020.03.07.s01
基金项目: 国家自然科学基金资助项目(51774225,51704223)
详细信息
    通讯作者:

    E-mail:ju_jiantao@163.com

  • 中图分类号: TF141

Thermodynamic study on design of electroslag remelting slag for Incoloy 825 Alloy

More Information
  • 摘要: 为控制Incoloy825合金中的Al、Ti含量,并减少电渣过程中氟化物的挥发。借助FactSage热力学软件,建立渣−金反应的热力学模型。设计出适宜控制Al、Ti含量的低氟渣系,探究了渣中组元与Al2O3和TiO2活度比的关系,并通过高温渣–金平衡实验进行验证。结果表明:当渣中CaO和Al2O3含量增加,导致$\lg \left( {{{a_{{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}}^2} / {a_{{\rm{Ti}}{{\rm{O}}_{\rm{2}}}}^3}}} \right)$值升高,即合金中Ti含量降低,Al含量升高;与此相反,渣中TiO2含量升高,使$\lg \left( {{{a_{{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}}^2} / {a_{{\rm{Ti}}{{\rm{O}}_{\rm{2}}}}^3}}} \right)$值降低,即Ti含量增加,Al含量减少;渣中CaF2和MgO含量的增加对$\lg \left( {{{a_{{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}}^2} / {a_{{\rm{Ti}}{{\rm{O}}_{\rm{2}}}}^3}}} \right)$的影响较小。合金中Al、Ti含量相差较大时,合金中Ti元素易氧化;Al、Ti含量相差较小时,Al元素易氧化。渣中CaO的质量分数为30%~33%、Al2O3的质量分数为30%~33%、TiO2的质量分数为6%~12%、CaF2的质量分数为20%~30%、MgO的质量分数为1%~5%时,能够有效控制合金中Al、Ti元素含量。
  • 图  1  渣中组元与$\lg \left( {{{a_{{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}}^2} / {a_{{\rm{Ti}}{{\rm{O}}_{\rm{2}}}}^3}}} \right)$的关系。(a) CaO;(b)Al2O3;(c)TiO2;(d)MgO;(e)CaF2

    Figure  1.  Relationship between component in slag and$\lg \left( {{{a_{{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}}^2} / {a_{{\rm{Ti}}{{\rm{O}}_{\rm{2}}}}^3}}} \right)$: (a) CaO; (b) Al2O3; (c) TiO2; (d) MgO; (e) CaF2

    图  2  不同初始Al含量下渣中组元对合金中平衡Ti含量的关系。(a)CaO;(b)Al2O3;(c)TiO2;(d)MgO;(e)CaF2

    Figure  2.  Relationship between the components in the slag and the equilibrium Ti content in the alloy under different initial Al contents: (a) CaO; (b) Al2O3; (c) TiO2; (d) MgO; (e) CaF2

    图  3  不同初始Ti含量下渣中组元与合金中平衡Al含量的关系。(a)CaO;(b)Al2O3;(c)TiO2;(d)MgO;(e)CaF2

    Figure  3.  Relationship between equilibrium Al content in components and alloys in slag under different initial Ti contents: (a) CaO; (b) Al2O3; (c) TiO2; (d) MgO; (e) CaF2

    图  4  合金中Al、Ti含量变化。(a)w(TiO2)=6%;(b)w(TiO2)=10%;(c)w(TiO2)=12%

    Figure  4.  Changes of Al and Ti contents in alloy: (a) w(TiO2)=6%; (b) w(TiO2)=10%; (c) w(TiO2)=12%

    表  1  Incoloy825合金中组元的活度相互作用系数[23-24]

    Table  1.   Activity interaction coefficient of the alloying elements in Incoloy825 alloy

    $e_i^j$MnCrNiAlTiCuMo
    Al0.0340.045−0.03760.040
    Ti−0.120.025−0.01660.0480.0140.016
    下载: 导出CSV

    表  2  Incoloy825合金成分(质量分数)

    Table  2.   Chemical composition of the Incoloy825 alloy %

    CMnSiPSCrMoNiCuAlTiFe
    ≤0.025≤1.0≤0.519.5‒23.52.5‒3.538‒461.5‒3.0≤0.20.6‒1.2bal
    0.0100.1070.1310.0090.00920.6203.18038.8801.6600.1201.000bal.
    下载: 导出CSV

    表  3  渣–金反应前后渣成分

    Table  3.   Composition of slag before and after slag-metal reaction %

    SlagBefore reaction After reaction
    CaF2CaOAl2O3MgOTiO2 CaF2CaOAl2O3MgOTiO2
    S125.033.033.03.06.0 19.637.231.44.27.6
    S225.031.031.03.010.0 19.836.330.24.19.5
    S325.030.030.03.012.0 20.135.529.44.210.8
    下载: 导出CSV
  • [1] 李星, 耿鑫, 姜周华, 等. 电渣重熔高温合金渣系对冶金质量的影响. 钢铁, 2015, 50(9):41

    Li X, Geng X, Jiang Z H, et al. Influences of slag system on metallurgical quality for high temperature alloy by electroslag remelting. Iron Steel, 2015, 50(9): 41
    [2] 段生朝, 郭汉杰, 石骁, 等. Inconel 718高温合金电渣重熔热力学分析. 工程科学学报, 2018, 40(增刊1): 53

    Duan S C, Guo H J, Shi X, et al. Thermodynamic analysis of the smelting of Inconel 718 superalloy during electroslag remelting process. Chin J Eng, 2018, 40(Suppl 1): 53
    [3] Hou D, Jiang Z H, Dong Y W, et al. Thermodynamic design of electroslag remelting slag for high titanium and low aluminium stainless steel based on IMCT. Ironmaking Steelmaking, 2016, 43(7): 517 doi: 10.1080/03019233.2015.1110920
    [4] Hou D, Jiang Z H, Qu T P, et al. Aluminum, titanium and oxygen control during electroslag remelting of stainless steel based on thermodynamic analysis. J Iron Steel Res Int, 2019, 26(1): 20 doi: 10.1007/s42243-018-0107-2
    [5] 侯栋, 董艳伍, 姜周华, 等. 含铝钛合金电渣重熔中的渣系设计及脱氧热力学. 东北大学学报:自然科学版, 2015, 36(11):1591

    Hou D, Dong Y W, Jiang Z H, et al. Deoxidation thermodynamics and slag designing in ESR process for aluminum-titannium alloy. J Northeast Univ Nat Sci, 2015, 36(11): 1591
    [6] Duan S C, Shi X, Mao M T, et al. Investigation of the oxidation behaviour of Ti and Al in Inconel 718 superalloy during electroslag remelting. Sci Rep, 2018, 8: 5232 doi: 10.1038/s41598-018-23556-3
    [7] 孙楠, 温宸, 刘子利, 等. Al、Ti含量对锻态Incoloy825合金组织和耐腐蚀性能的影响. 稀有金属材料与工程, 2018, 47(3):860

    Sun N, Wen C, Liu Z L, et al. Effect of Al, Ti contents on the microstructure and corrosion resistance of as-forged Incoloy825 alloy. Rare Met Mater Eng, 2018, 47(3): 860
    [8] 陈崇禧, 王涌, 傅杰, 等. 高钛低铝高温合金电渣重熔中钛烧损的研究. 金属学报, 1981, 17(1):50

    Chen C X, Wang Y, Fu J, et al. A study on the titanium loss during electroslag remelting high titanium and low aluminum content superally. Acta Metall Sinica, 1981, 17(1): 50
    [9] 粟硕. R-26合金电渣重熔Ti含量控制研究. 钢铁研究学报, 2011, 23(增刊2): 282

    Su S. Research on control of Ti content in electroslag remelting of R-26. J Iron Steel Res, 2011, 23(Suppl 2): 282
    [10] Yang J G, Park J H. Distribution behavior of aluminum and titanium between nickel-based alloys and molten slags in the electroslag remelting (ESR) process. Metall Mater Trans B, 2017, 48(4): 2147 doi: 10.1007/s11663-017-0994-9
    [11] 王海江, 徐朋, 杨松. 氩气流量、渣系和加Al粉对1Cr21Ni5Ti钢保护气氛重熔锭[Ti]的影响. 特殊钢, 2015, 36(6):23 doi: 10.3969/j.issn.1003-8620.2015.06.007

    Wang H J, Xu P, Yang S. Effect of argon flow rate, slag series and adding aluminium on[Ti] of shielding atmosphere ESR ingot of steel 1Cr21Ni5Ti. Special Steel, 2015, 36(6): 23 doi: 10.3969/j.issn.1003-8620.2015.06.007
    [12] 尹彬, 李万明, 吴少鹏, 等. Inconel718高温合金电渣重熔铝钛元素烧损热力学分析. 钢铁, 2019, 54(5):86

    Yin B, Li W M, Wu S P, et al. Thermodynamic analysis of Al and Ti element loss in electroslag remelting Inconel 718 superalloy. Iron Steel, 2019, 54(5): 86
    [13] Li S J, Cheng G G, Yang L, et al. A thermodynamic model to design the equilibrium slag compositions during electroslag remelting process: description and verification. ISIJ Int, 2017, 57(4): 713 doi: 10.2355/isijinternational.ISIJINT-2016-655
    [14] Duan S C, Shi X, Wang F, et al. A review of methodology development for controlling loss of alloying elements during the electroslag remelting process. Metall Mater Trans B, 2019, 50(6): 3055 doi: 10.1007/s11663-019-01665-2
    [15] Hou D, Liu F B, Qu T P, et al. Behavior of alloying elements during drawing-ingot-type electroslag remelting of stainless steel containing titanium. ISIJ Int, 2018, 58(5): 876 doi: 10.2355/isijinternational.ISIJINT-2017-687
    [16] 姜开友, 秦文华, 王超洋. 电渣重熔车间工作场所职业病危害因素检测分析. 中国工业医学杂志, 2018, 31(3):220

    Jiang K Y, Qin W H, Wang C Y. Analysis on detection result of occupational hazards in workplaces of electroslag remelting workshop. Chin J Ind Med, 2018, 31(3): 220
    [17] 巨建涛, 吕振林, 焦志远, 等. CaF2‒SiO2‒CaO渣系的非等温挥发行为. 过程工程学报, 2012, 12(4):618

    Ju J T, Lv Z L, Jiao Z Y, et al. Non-isothermal analysis on the evaporation behavior of CaF2‒SiO2‒CaO system slag. Chin J Process Eng, 2012, 12(4): 618
    [18] Zhao J X, Chen Y M, Li X M, et al. Mechanism of slag composition change during electroslag remelting process. J Iron Steel Res Int, 2011, 18(10): 24 doi: 10.1016/S1006-706X(12)60017-X
    [19] 赵俊学, 卢亮, 赵忠宇, 等. 电渣重熔用五元高氟渣高温挥发机制. 钢铁, 2019, 54(6):43

    Zhao J X, Lu L, Zhao Z Y, et al. Volatilization mechanism of ESR slag with high fluoride under high-temperature. Iron Steel, 2019, 54(6): 43
    [20] 茅洪祥, 李正邦. 低氟渣及无氟渣电渣重熔研究. 钢铁研究总院学报, 1983, 3(4):597

    Mao H X, Li Z B. A metallurgical study on low fluorine and fluorine-free slag for electroslag remelting. J Iron Steel Res, 1983, 3(4): 597
    [21] Shi C B, Shin S H, Zheng D L, et al. Development of low-fluoride slag for electroslag remelting: role of Li2O on the viscosity and structure of the slag. Metall Mater Trans B, 2016, 47(6): 3343 doi: 10.1007/s11663-016-0826-3
    [22] Pateisky G, Biele H, Fleischer H J. The reactions of titanium and silicon with Al2O3‒CaO‒CaF2 slags in the ESR Process. J Vac Sci Technol, 1972, 9(6): 1318 doi: 10.1116/1.1317029
    [23] Karasev A V, Suito H. Analysis of size distributions of primary oxide inclusions in Fe-10 mass Pct Ni-M(M=Si, Ti, Al, Zr, and Ce) alloy. Metall Mater Trans B, 1999, 30(2): 259 doi: 10.1007/s11663-999-0055-0
    [24] Pak J J, Jeong Y S, Tae S J, et al. Thermodynamics of titanium and nitrogen in an Fe‒Ni melt. Metall Mater Trans B, 2005, 36(4): 489 doi: 10.1007/s11663-005-0040-1
    [25] Jiang Z H, Hou D, Dong Y W, et al. Effect of slag on titanium, silicon, and aluminum contents in superalloy during electroslag remelting. Metall Mater Trans B, 2016, 47(2): 1465 doi: 10.1007/s11663-015-0530-8
    [26] Zheng D L, Li J, Shi C B, et al. Crystallization characteristics and in-mold performance of electroslag remelting-type TiO2-bearing slag. Metall Mater Trans B, 2019, 50(3): 1148 doi: 10.1007/s11663-019-01536-w
    [27] Shi C B, Zheng D L, Shin S H, et al. Effect of TiO2 on the viscosity and structure of low-fluoride slag used for electroslag remelting of Ti-containing steels. Int J Miner Metall Mater, 2017, 24(1): 18 doi: 10.1007/s12613-017-1374-9
    [28] 陈艳梅, 赵俊学, 樊君, 等. 电渣重熔过程中渣成分变化的研究. 特殊钢, 2010, 31(6):7 doi: 10.3969/j.issn.1003-8620.2010.06.003

    Chen Y M, Zhao J X, Fan J, et al. A study on variations of slag ingredient during electroslag remelting process. Special Steel, 2010, 31(6): 7 doi: 10.3969/j.issn.1003-8620.2010.06.003
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  436
  • HTML全文浏览量:  272
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-07
  • 刊出日期:  2020-12-25

目录

    /

    返回文章
    返回