• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

常规卤化物和高分子材料抑制尾矿库扬尘的试验

赵筠康 魏作安 杨永浩 路停 王文松 李世龙

赵筠康, 魏作安, 杨永浩, 路停, 王文松, 李世龙. 常规卤化物和高分子材料抑制尾矿库扬尘的试验[J]. 工程科学学报, 2021, 43(4): 486-494. doi: 10.13374/j.issn2095-9389.2020.04.23.002
引用本文: 赵筠康, 魏作安, 杨永浩, 路停, 王文松, 李世龙. 常规卤化物和高分子材料抑制尾矿库扬尘的试验[J]. 工程科学学报, 2021, 43(4): 486-494. doi: 10.13374/j.issn2095-9389.2020.04.23.002
ZHAO Jun-kang, WEI Zuo-an, YANG Yong-hao, LU Ting, WANG Wen-song, LI Shi-Long. Control of dust from tailings pond using conventional halides and polymer materials[J]. Chinese Journal of Engineering, 2021, 43(4): 486-494. doi: 10.13374/j.issn2095-9389.2020.04.23.002
Citation: ZHAO Jun-kang, WEI Zuo-an, YANG Yong-hao, LU Ting, WANG Wen-song, LI Shi-Long. Control of dust from tailings pond using conventional halides and polymer materials[J]. Chinese Journal of Engineering, 2021, 43(4): 486-494. doi: 10.13374/j.issn2095-9389.2020.04.23.002

常规卤化物和高分子材料抑制尾矿库扬尘的试验

doi: 10.13374/j.issn2095-9389.2020.04.23.002
基金项目: 国家重点研发计划资助项目(2017YFC0804609);重庆市自然科学基金资助项目(cstc2019jcyj-bshX0022);重庆市博士后科研项目特别资助(XmT2018017)
详细信息
    通讯作者:

    E-mail: weiza@cqu.edu.cn

  • 中图分类号: TD862

Control of dust from tailings pond using conventional halides and polymer materials

More Information
  • 摘要: 选取溶液质量浓度、溶液喷洒量以及外部风速作为变量,通过室内试验考察了常规卤化物和高分子材料对扬尘控制的效果。以抗风蚀能力和结壳抗破坏能力为响应变量。结果表明,随着抑尘剂浓度的增加和喷洒量的增加,结壳的抗风蚀性和抗破坏性可以得到提高。在卤化物溶液中,CaCl2的抑尘性能最好。在风速为7.5 m·s−1的条件下,CaCl2喷洒量为4.5 L·m−2,且其质量浓度为50 g·L−1时,尾矿质量损失量为0.75 g·m−2·min−1,贯入阻力为466 kPa。在高分子材料中,聚丙烯酰胺的抑尘效果最好。在风速为7.5 m·s−1的条件下,聚丙烯酰胺喷洒量为4.5 L·m−2,且其质量浓度为0.5 g·L−1时,尾矿质量损失量为0.30 g·m−2·min−1,贯入阻力为248 kPa。抑尘剂的选取可根据当地年均风速确定,年均风速较大时,可选择聚丙烯酰胺作为尾矿库抑尘剂,反之则可选择CaCl2为尾矿库抑尘剂。
  • 图  1  铜尾矿粒径分布曲线

    Figure  1.  Particle size distribution curve of copper tailings

    图  2  抗风性能试验图

    Figure  2.  Schematic of blow test

    图  3  5个贯入测试点的位置

    Figure  3.  Photograph of the locations of the five penetrating test points in the tailings samples

    图  4  卤化物抑尘剂在不同风速下的抗风蚀性能试验结果(喷洒量为1.5 L·m−2)。(a)风速为4.5 m·s−1;(b)风速为7.5 m·s−1;(c)风速为10 m·s−1

    Figure  4.  Test result of wind erosion resistance of halide sprayed tailings (spraying amount of 1.5 L·m−2): (a) wind speed of 4.5 m·s−1; (b) wind speed of 7.5 m·s−1; (c) wind speed of 10 m·s−1

    图  5  卤化物抑尘剂在不同风速下的抗风蚀性能试验结果(喷洒量为4.5 L·m−2)。(a)风速为4.5 m·s−1;(b)风速为7.5 m·s−1;(c)风速为10 m·s−1

    Figure  5.  Test result of wind erosion resistance of halide sprayed tailings (spraying amount of 4.5 L·m−2): (a) wind speed of 4.5 m·s−1; (b) wind speed of 7.5 m·s−1; (c) wind speed of 10 m·s−1

    图  6  高分子抑尘剂在不同风速下的抗风蚀性能试验结果(喷洒量为1.5 L·m−2)。(a)风速为4.5 m·s−1;(b)风速为7.5 m·s−1;(c)风速为10 m·s−1

    Figure  6.  Test result of wind erosion resistance of polymer sprayed tailings (spraying amount of 1.5 L·m−2): (a) wind speed of 4.5 m·s−1; (b) wind speed of 7.5 m·s−1; (c) wind speed of 10 m·s−1

    图  7  高分子抑尘剂在不同风速下的抗风蚀性能试验结果(喷洒量为4.5 L·m−2)。(a)风速为4.5 m·s−1;(b)风速为7.5 m·s−1;(c)风速为10 m·s−1

    Figure  7.  Test result of wind erosion resistance of polymer sprayed tailings (spraying amount of 4.5 L·m−2): (a) wind speed of 4.5 m·s−1; (b) wind speed of 7.5 m·s−1; (c) wind speed of 10 m·s−1

    图  8  喷洒3种卤化物抑尘剂溶液后的表面贯入阻力的测试结果。(a)喷洒量为1.5 L·m−2;(b)喷洒量为3.0 L·m−2;(c)喷洒量为4.5 L·m−2

    Figure  8.  Test results of surface penetration resistance after spraying three halide dust-inhibitor solutions: (a) spraying amount of 1.5 L·m−2; (b) spraying amount of 3.0 L·m−2; (c) spraying amount of 4.5 L·m−2

    图  9  喷洒3种高分子抑尘剂溶液后的表面贯入阻力的测试结果。(a)喷洒量为1.5 L·m−2;(b)喷洒量为3.0 L·m−2;(c)喷洒量为4.5 L·m−2

    Figure  9.  Test results of surface penetration resistance after spraying with three kinds of polymer dust-inhibitor solution: (a) spraying amount of 1.5 L·m−2; (b) spraying amount of 3.0 L·m−2; (c) spraying amount of 4.5 L·m−2

    表  1  铜尾矿的化学组成

    Table  1.   Chemical composition of copper tailings %

    Chemical elementSiCaFeAlNaMgPSTiOther
    Mass fraction46.8416.8413.329.813.792.562.061.871.021.89
    下载: 导出CSV

    表  2  试验风速等级

    Table  2.   Test wind levels

    Test wind levelsWind speed / (m·s−1)Wind class
    13.4–5.43
    25.5–7.94
    38.0–10.75
    下载: 导出CSV

    表  3  CaCl2与聚丙烯酰胺试样损失量对比

    Table  3.   Comparison of losses of CaCl2 and polyacrylamide samples

    Reagent
    name
    Concentration /
    (g·L−1)
    Spraying amount /
    (L·m−2)
    Tailings loss at wind speed
    of 4.5 m·s−1/
    (g·m−2·min −1)
    Tailings loss at wind speed
    of 7.5 m·s−1 /
    (g·m−2·min −1)
    Tailings loss at wind speed
    of 10.0 m·s−1/
    (g·m−2·min −1)
    Water04.512.695.33
    CaCl2504.50.510.710.90
    Polyacrylamide0.54.50.190.300.79
    下载: 导出CSV

    表  4  CaCl2与聚丙烯酰胺试样贯入阻力对比

    Table  4.   Comparison of penetration resistances of CaCl2 and polyacrylamide samples

    Reagent nameConcentration /
    (g·L−1)
    Spraying amount /
    (L·m−2)
    Penetration
    resistance / kPa
    Water04.5250
    CaCl2504.5466
    Polyacrylamide0.54.5248
    下载: 导出CSV
  • [1] 王昆, 杨鹏, Karen Hudson-Edwards, 等. 尾矿库溃坝灾害防控现状及发展. 工程科学学报, 2018, 40(5):526

    Wang K, Yang P, Hudson-Edwards K, et al. Status and development for the prevention and management of tailings dam failure accidents. Chin J Eng, 2018, 40(5): 526
    [2] 陈典助. 固体矿山尾矿堆存技术与综合利用分析与研究. 湖南有色金属, 2016, 32(4):5 doi: 10.3969/j.issn.1003-5540.2016.04.002

    Chen D Z. Analysis and research of stacking process and comprehensive utilization of solid mine-tailings. Hunan Nonferrous Met, 2016, 32(4): 5 doi: 10.3969/j.issn.1003-5540.2016.04.002
    [3] 袁永强. 我国尾矿库安全现状分析及建议. 有色冶金设计与研究, 2010, 31(1):32 doi: 10.3969/j.issn.1004-4345.2010.01.011

    Yuan Y Q. Analysis and suggestions on current safety status of domestic tailings ponds. Nonferrous Met Eng Res, 2010, 31(1): 32 doi: 10.3969/j.issn.1004-4345.2010.01.011
    [4] 那琼. 尾矿库干滩防尘抑尘剂的试验研究. 金属矿山, 2002(6):45 doi: 10.3321/j.issn:1001-1250.2002.06.017

    Na Q. Test study on the dust preventives for the dry sands of tailings reservoir. Met Mine, 2002(6): 45 doi: 10.3321/j.issn:1001-1250.2002.06.017
    [5] 蔡嗣经, 杨鹏. 金属矿山尾矿问题及其综合利用与治理. 中国工程科学, 2000, 2(4):89 doi: 10.3969/j.issn.1009-1742.2000.04.017

    Cai S J, Yang P. Tailings problems and tailings utilization and treatments in the metal mines. Eng Sci, 2000, 2(4): 89 doi: 10.3969/j.issn.1009-1742.2000.04.017
    [6] 周海林. 尾矿库环境影响评价中应注意的问题. 矿业工程, 2013, 11(5):65 doi: 10.3969/j.issn.1671-8550.2013.05.026

    Zhou H L. Problems to be concerned in environmental impact assessment of tailings reservoir. Min Eng, 2013, 11(5): 65 doi: 10.3969/j.issn.1671-8550.2013.05.026
    [7] 高原, 蓝登明, 黄晓强, 等. 白音诺尔铅锌矿尾矿库扬尘风积物对植被生长的影响. 内蒙古农业大学学报(自然科学版), 2016, 37(4):60

    Gao Y, Lan D M, Huang X Q, et al. Effects of tailings pond on vegetation in Baiyinnuoer lead-zinc mine. J Inner Mongolia Agric Univ Nat Sci, 2016, 37(4): 60
    [8] 张国斌. 尾矿库复土造田. 有色金属(矿山部分), 2002, 54(4):40

    Zhang G B. Tailings ponds to make soil. Nonferrous Met (Mine Sect), 2002, 54(4): 40
    [9] 焦志强. 火电厂灰场二次扬尘综合防治技术研究. 房材与应用, 2000, 28(1):23

    Jiao Z Q. Study on comprehensive prevention and treatment technique for secondary dust escape in fly ash storage areas of thermal of thermal power plants. Hous Mater Appl, 2000, 28(1): 23
    [10] 李颖泉, 赵保卫, 董波. 化学抑尘技术治理无组织源扬尘污染研究进展. 环境科学与管理, 2019, 44(6):76 doi: 10.3969/j.issn.1673-1212.2019.06.017

    Li Y Q, Zhao B W, Dong B. Research progress of chemical dust suppression technology to control dust pollution from unorganized sources. Environ Sci Manage, 2019, 44(6): 76 doi: 10.3969/j.issn.1673-1212.2019.06.017
    [11] 杜翠凤, 杜建华, 王婷. 黏结型尾矿库抑尘剂及环境适应性. 北京科技大学学报, 2009, 31(8):951 doi: 10.3321/j.issn:1001-053X.2009.08.002

    Du C F, Du J H, Wang T. Cohesive dust suppressant used in tailings dams and its environmental adaptability. J Univ Sci Technol Beijing, 2009, 31(8): 951 doi: 10.3321/j.issn:1001-053X.2009.08.002
    [12] 吴超. 化学抑尘. 长沙: 中南大学出版社, 2003

    Wu C. Chemical Suppression Dust. Changsha: Central South University Press, 2003
    [13] 欧阳跃军. 无机盐溶液表面张力的影响研究. 中国科技信息, 2009(22):42 doi: 10.3969/j.issn.1001-8972.2009.22.017

    Ouyang Y J. Study on effect of surface tension of the inorganic saline solution. China Sci Technol Inform, 2009(22): 42 doi: 10.3969/j.issn.1001-8972.2009.22.017
    [14] 许玥. 土方施工阶段膜型扬尘抑制剂研制及其性能研究. 广州化工, 2019, 47(10):59 doi: 10.3969/j.issn.1001-9677.2019.10.024

    Xu Y. Development of membrane-cover dust suppressor for earthwork. Guangzhou Chem Ind, 2019, 47(10): 59 doi: 10.3969/j.issn.1001-9677.2019.10.024
    [15] 刘明礼. 浅谈氯化物对环境的影响. 四川环境, 1993, 12(3):74

    Liu M L. Brief review for effect of chloride on environment. Sichuan Environ, 1993, 12(3): 74
    [16] 刘松玉, 张涛, 蔡国军, 等. 生物能源副产品木质素加固土体研究进展. 中国公路学报, 2014, 27(8):1 doi: 10.3969/j.issn.1001-7372.2014.08.001

    Liu S Y, Zhang T, Cai G J, et al. Research progress of soil stabilization with lignin from bio-energy by-products. China J Highway Transport, 2014, 27(8): 1 doi: 10.3969/j.issn.1001-7372.2014.08.001
    [17] 杨晓雄, 闻荻江. 聚乙烯醇对环境影响的研究进展. 苏州科技学院学报(工程技术版), 2005, 18(1):9

    Yang X X, Wen D J. Development on environmental influence of PVA. J Univ Sci Technol Suzhou Eng Technol, 2005, 18(1): 9
    [18] 崔海英, 任树梅. 应用聚丙烯酰胺防治水土流失的研究现状. 水土保持科技情报, 2005(2):25

    Cui H Y, Ren S M. Research status of applying polyacrylamide to control soil erosion. Sci Tech Inform Soil Water Conserv, 2005(2): 25
    [19] 黄河, 施斌, 刘瑾, 等. STW型生态土壤稳定剂改性土强度试验研究. 防灾减灾工程学报, 2008, 28(1):87

    Huang H, Shi B, Liu J, et al. Experimental study on the strength of soil modified by STW ecotypic soil stabilizer. J Disaster Prevent Mitigat Eng, 2008, 28(1): 87
    [20] 刘瑾, 施斌, 姜洪涛, 等. STW型高分子土壤稳定剂改良粘性土团聚体水稳性实验研究. 水文地质工程地质, 2009, 36(2):77 doi: 10.3969/j.issn.1000-3665.2009.02.016

    Liu J, Shi B, Jiang H T, et al. Experimental study on the water-stability property of clay aggregates stabilized by STW polymer soil stabilizer. Hydrogeol Eng Geol, 2009, 36(2): 77 doi: 10.3969/j.issn.1000-3665.2009.02.016
    [21] Wang Y T, Yang K, Tang Z J, et al. The effectiveness of the consolidated desert surface by mixing of fly ash and polyacrylamide in wind erosion control. Water Air Soil Pollut, 2016, 227(12): 429
    [22] 王银梅, 谌文武, 韩文峰. SH固沙机理的微观探讨. 岩土力学, 2005, 26(4):650 doi: 10.3969/j.issn.1000-7598.2005.04.031

    Wang Y M, Chen W W, Han W F. Microstudy on mechanism of sand fixation with SH. Rock Soil Mech, 2005, 26(4): 650 doi: 10.3969/j.issn.1000-7598.2005.04.031
    [23] 王银梅, 孙冠平, 谌文武, 等. SH固沙剂固化沙体的强度特征. 岩石力学与工程学报, 2003, 22(增刊2): 2883

    Wang Y M, Sun G P, Chen W W, et al. Strength characteristics of sand fixated by SH. Chin J Rock Mech Eng, 2003, 22(Suppl 2): 2883
    [24] Teo J A, Ray C, El-Swaify S A. Screening of polymers on selected Hawaii soils for erosion reduction and particle settling. Hydrol Processes, 2006, 20(1): 109
    [25] 赵云, 穆兴民, 王飞, 等. 保护性耕作对农田土壤风蚀影响的室内风洞实验研究. 水土保持研究, 2012, 19(3):16

    Zhao Y, Mu X M, Wang F, et al. Impact of conservation tillage on soil wind erosion of farmland based on wind tunnel test. Res Soil Water Conserv, 2012, 19(3): 16
    [26] 杜丽. 公路工程施工扬尘机理及抑尘技术分析. 公路与汽运, 2019(6):148 doi: 10.3969/j.issn.1671-2668.2019.06.038

    Du L. Analysis of dust raising mechanism and dust suppression technology in highway engineering. Highways Autom Appl, 2019(6): 148 doi: 10.3969/j.issn.1671-2668.2019.06.038
    [27] 吴丹. 聚合物型化学抑尘剂及其性能[学位论文]. 天津: 河北工业大学, 2017

    Wu D. Polymer Type Chemical Dust Suppression Agent and Its Properties[Dissertation]. Tianjin: Hebei University of Technology, 2017
    [28] 刘东, 任树梅, 杨培岭. PAM对土壤抗风蚀能力的影响. 中国水土保持, 2006(12):33 doi: 10.3969/j.issn.1000-0941.2006.12.013

    Liu D, Ren S M, Yang P L. Influence of PAM to capability of anti-wind erosion of soil. Soil Water Conserv China, 2006(12): 33 doi: 10.3969/j.issn.1000-0941.2006.12.013
    [29] 董智, 李红丽, 左合君, 等. 土壤凝结剂沙障防沙机理的风洞模拟实验研究. 干旱区资源与环境, 2004, 18(3):154 doi: 10.3969/j.issn.1003-7578.2004.03.030

    Dong Z, Li H L, Zuo H J, et al. Wind tunnel test on sand-preventing mechanism of soil coagulant sand-barrier. J Arid Land Resour Environ, 2004, 18(3): 154 doi: 10.3969/j.issn.1003-7578.2004.03.030
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  895
  • HTML全文浏览量:  353
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-23
  • 网络出版日期:  2020-12-22
  • 刊出日期:  2021-03-31

目录

    /

    返回文章
    返回