• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属薄板面内压剪变形的损伤断裂行为

钱凌云 马腾云 安鹏 纪婉婷 孙朝阳

钱凌云, 马腾云, 安鹏, 纪婉婷, 孙朝阳. 金属薄板面内压剪变形的损伤断裂行为[J]. 工程科学学报, 2021, 43(2): 263-272. doi: 10.13374/j.issn2095-9389.2020.09.23.002
引用本文: 钱凌云, 马腾云, 安鹏, 纪婉婷, 孙朝阳. 金属薄板面内压剪变形的损伤断裂行为[J]. 工程科学学报, 2021, 43(2): 263-272. doi: 10.13374/j.issn2095-9389.2020.09.23.002
QIAN Ling-yun, MA Teng-yun, AN Peng, JI Wan-ting, SUN Chao-yang. Damage and fracture behavior of a metal sheet under in-plane compression–shear deformation[J]. Chinese Journal of Engineering, 2021, 43(2): 263-272. doi: 10.13374/j.issn2095-9389.2020.09.23.002
Citation: QIAN Ling-yun, MA Teng-yun, AN Peng, JI Wan-ting, SUN Chao-yang. Damage and fracture behavior of a metal sheet under in-plane compression–shear deformation[J]. Chinese Journal of Engineering, 2021, 43(2): 263-272. doi: 10.13374/j.issn2095-9389.2020.09.23.002

金属薄板面内压剪变形的损伤断裂行为

doi: 10.13374/j.issn2095-9389.2020.09.23.002
基金项目: 国家自然科学基金资助项目(51805023);北京市自然科学基金资助项目(3184056);中央高校基础科研业务费资助项目(FRF-TP-20-009A2);中南大学高性能复杂制造国家重点实验室开放基金资助项目(Kfkt2017-03)
详细信息
    通讯作者:

    E-mail:qianly@ustb.edu.cn

  • 中图分类号: TG30

Damage and fracture behavior of a metal sheet under in-plane compression–shear deformation

More Information
  • 摘要: 相变诱导塑性钢(TRansformation induced plasticity, TRIP)作为常用的先进高强钢在汽车等交通工具的轻量化方面有广泛的应用前景。而对于其复杂零件的成形过程,韧性断裂是不可忽视的问题之一。本文针对现有实验装置不易诱发薄板承受面内压剪时断裂失效,从而无法研究板料负应力三轴度区间断裂行为的问题,以高强钢TRIP800薄板为研究对象,设计了可在单向试验机完成压剪实验的试样和夹具。通过调整夹具旋转角度和试样装夹位置可以实现同一种试样在广泛的负应力三轴度范围内进行压剪断裂分析。基于ABAQUS/Explicit平台建立了三个典型加载方向20°、30°和45°对应的压剪过程有限元模型,分析表明:三种情况的试样局部变形区域的应力三轴度都小于0且断裂点的应力三轴度低至−0.485,验证了设计的装置可实现负应力三轴度区间的断裂失效分析,同时基于MMC断裂准则分析了不同应力状态的初始损伤情况及损伤扩展路径。
  • 图  1  板料面内压剪实验原理示意图

    Figure  1.  Schematic of the in-plane compression–shear experiment

    图  2  试样结构和尺寸图。(a)结构图;(b)尺寸图(单位: mm)

    Figure  2.  Geometrical characteristics and dimensions of the specimen: (a) structure diagram;(b) dimensions diagram (unit: mm)

    图  3  实验夹具组件与装配

    Figure  3.  Experimental setup of the in-plane compression–shear experiment

    图  4  夹具体安全性分析

    Figure  4.  Safety analysis of fixture

    图  5  试样有限元网格

    Figure  5.  Finite element mesh of the specimen

    图  6  TRIP800钢板的应力–应变曲线

    Figure  6.  True stress–plastic strain curve of the TRIP800 sheet

    图  7  三种加载角度的载荷−位移曲线

    Figure  7.  Force–displacement responses of three loading angles

    图  8  α=45°时试样局部变形区损伤演化图。(a)d=3.9 mm;(b)d=4.1 mm;(c)d=4.3 mm;(d)d=4.7 mm

    Figure  8.  Damage evolution of the local deformation zone of the specimen for α = 45°: (a) d=3.9 mm; (b) d=4.1 mm; (c) d=4.3 mm; (d) d=4.7 mm

    图  9  三种加载角度试样局部变形区在初始断裂时刻的应力三轴度

    Figure  9.  Stress triaxiality in local deformation zones for specimens under different loading angles at fracture onset

    图  10  三种加载角度试样变形区不同位置η的演化图

    Figure  10.  Evolution of η at different positions during the experiment under different loading angles

    图  11  不同加载角度时试样损伤因子D随加载位移d的演化图

    Figure  11.  Evolution of a damage factor D with loading displacement d for different loading angles

    表  1  H13钢和40Cr的材料属性

    Table  1.   Material properties of H13 and 40Cr

    MaterialDensity/
    (kg·m−3)
    Young’s
    modulus/
    MPa
    Poisson’s
    ratio
    Yield strength/
    MPa
    Tensile strength/
    MPa
    H1378502100000.315501800
    40Cr79002100000.28785810
    下载: 导出CSV

    表  2  三个方向的厚向异性系数及Hill’48函数的六个各向异性参数

    Table  2.   Three Lankford ratios and six anisotropic parameters of the Hill’48 function

    r0r45r90GKMNPQ
    0.870.811.030.4520.5350.4651.51.51.289
    下载: 导出CSV

    表  3  不同加载角度试样的初始断裂应变和应力三轴度关系

    Table  3.   Initial fracture strain and stress triaxiality at the fracture onset of specimens under different loading angles

    Loading angle, α/(°)DisplacementFracture strainStress triaxiality, η
    202.10.60−0.485
    302.70.75−0.424
    454.11.06−0.419
    下载: 导出CSV
  • [1] 刘文华. 高强度钢板在汽车轻量化中的应用研究[学位论文]. 武汉: 武汉理工大学, 2009.

    Liu W H. Research on Application of High Strength Steel in Automotive Lightweight [Dissertation]. Wuhan: Wuhan University of Technology, 2009.
    [2] Chiang J, Lawrence B, Boyd J D, et al. Effect of microstructure on retained austenite stability and work hardening of TRIP steels. Mater Sci Eng A, 2011, 528(13-14): 4516 doi: 10.1016/j.msea.2011.02.032
    [3] Lou Y S, Huh H. Prediction of ductile fracture for advanced high strength steel with a new criterion: Experiments and simulation. J Mater Process Technol, 2013, 213(8): 1284 doi: 10.1016/j.jmatprotec.2013.03.001
    [4] Li Y N, Luo M, Gerlach J, et al. Prediction of shear-induced fracture in sheet metal forming. J Mater Process Technol, 2010, 210(14): 1858 doi: 10.1016/j.jmatprotec.2010.06.021
    [5] Choi K S, Liu W N, Sun X, et al. Microstructure-based constitutive modeling of TRIP steel: prediction of ductility and failure modes under different loading conditions. Acta Mater, 2009, 57(8): 2592 doi: 10.1016/j.actamat.2009.02.020
    [6] Zhu H, Zhu L, Chen J H, et al. Investigation of fracture mechanism of 6063 aluminum alloy under different stress states. Int J Fract, 2007, 146(3): 159 doi: 10.1007/s10704-007-9158-2
    [7] Bao Y B, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci, 2004, 46(1): 81 doi: 10.1016/j.ijmecsci.2004.02.006
    [8] Shouler D R, Allwood J M. Design and use of a novel sample design for formability testing in pure shear. J Mater Process Technol, 2010, 210(10): 1304 doi: 10.1016/j.jmatprotec.2010.03.019
    [9] 穆磊, 臧勇, Araujo S P M. 一个基于孔洞演化机制的韧性断裂预测模型. 工程科学学报, 2017, 39(4):557

    Mu L, Zang Y, Araujo S P M. A micromechanically motivated uncoupled model for ductile fracture prediction. Chin J Eng, 2017, 39(4): 557
    [10] 韩光照, 蔡力勋, 姚迪, 等. 延性材料断裂准则与平面应变断裂韧度. 航空学报, 2018, 39(8):145

    Han G Z, Cai L X, Yao D, et al. Fracture criterion and plane-strain fracture toughness of ductile materials. Acta Aeron Astron Sin, 2018, 39(8): 145
    [11] 贾哲, 穆磊, 臧勇. 金属塑性成形中的韧性断裂微观机理及预测模型的研究进展. 工程科学学报, 2018, 40(12):1454

    Jia Z, Mu L, Zang Y. Research progress on the micro-mechanism and prediction models of ductile fracture in metal forming. Chin J Eng, 2018, 40(12): 1454
    [12] Zhu Y Z, Kiran R, Xing J H, et al. A modified micromechanics framework to predict shear involved ductile fracture in structural steels at intermediate and low-stress triaxialities. Eng Fract Mech, 2020, 225: 106860 doi: 10.1016/j.engfracmech.2019.106860
    [13] Lou Y S, Yoon J W, Huh H. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality. Int J Plast, 2014, 54: 56
    [14] Kubík P, Šebek F, Hůlka J, et al. Calibration of ductile fracture criteria at negative stress triaxiality. Int J Mech Sci, 2016, 108-109: 90
    [15] 李翀. 薄壁材料在塑性加工中的失稳现象分析与应用[学位论文]. 北京: 北京理工大学, 2017

    Li C. Analysis and Application of the Instability of Thin-Walled Materials in Plastic Forming Process [Dissertation]. Beijing: Beijing Institute of Technology, 2017
    [16] 黄光胜, 王利飞, 王艳霞, 等. 一种薄板材料压缩辅助工具及使用方法: 中国专利, CN103335883A. 2013-10-02

    Huang G S, Wang L F, Wang Y X, et al. An Auxiliary Tool for Thin Plate Material Compression and Its Application: China Patent, CN103335883A. 2013-10-02
    [17] Mohr D, Henn S. Calibration of stress-triaxiality dependent crack formation criteria: a new hybrid experimental–numerical method. Exp Mech, 2007, 47(6): 805 doi: 10.1007/s11340-007-9039-7
    [18] Brünig M, Gerke S, Schmidt M. Damage and failure at negative stress triaxialities: Experiments, modeling and numerical simulations. Int J Plast, 2018, 102: 70
    [19] Gerke S, Zistl M, Bhardwaj A, et al. Experiments with the X0-specimen on the effect of non-proportional loading paths on damage and fracture mechanisms in aluminum alloys. Int J Solids Struct, 2019, 163: 157 doi: 10.1016/j.ijsolstr.2019.01.007
    [20] 徐芹所, 庄新村, 方勇勇, 等. 一种新的金属板料双向压缩剪切试验方法. 上海交通大学学报, 2015, 49(10):1510

    Xu Q S, Zhuang X C, Fang Y Y, et al. A novel test method for symmetrical sheet metal compression-shear. J Shanghai Jiaotong Univ, 2015, 49(10): 1510
    [21] 吴彦骏, 庄新村, 赵震. 不同应力状态下45钢断口形貌分析. 塑性工程学报, 2013, 20(3):106 doi: 10.3969/j.issn.1007-2012.2013.03.020

    Wu Y J, Zhuang X C, Zhao Z. Fracture topography analysis of C45 steel under different stress states. J Plast Eng, 2013, 20(3): 106 doi: 10.3969/j.issn.1007-2012.2013.03.020
    [22] Wu H, Xu W C, Shan S B, et al. An extended GTN model for low stress triaxiality and application in spinning forming. J Mater Process Technol, 2019, 263: 112
    [23] Lou Y S, Yoon J W, Huh H, et al. Correlation of the maximum shear stress with micro-mechanisms of ductile fracture for metals with high strength-to-weight ratio. Int J Mech Sci, 2018, 146-147: 583 doi: 10.1016/j.ijmecsci.2018.03.025
    [24] Hill R. A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc Lond A, 1948, 193(1033): 281
    [25] Qian L Y, Fang G, Zeng P. Modeling of the ductile fracture during the sheet forming of aluminum alloy considering non-associated constitutive characteristic. Int J Mech Sci, 2017, 126: 55 doi: 10.1016/j.ijmecsci.2017.03.013
    [26] Reis L C, Prates P A, Oliveira M C, et al. Inverse identification of the Swift law parameters using the bulge test. Int J Mater Form, 2017, 10(4): 493 doi: 10.1007/s12289-016-1296-5
    [27] Bai Y L, Wierzbicki T. Application of extended Mohr–Coulomb criterion to ductile fracture. Int J Fract, 2010, 161(1): 1
    [28] Xue L. Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading. Int J Solids Struct, 2007, 44(16): 5163
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  184
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-23
  • 刊出日期:  2021-02-26

目录

    /

    返回文章
    返回