印象, 马博渊, 班晓娟, 黄海友, 王宇, 李松岩. 面向显微影像的多聚焦多图融合中失焦扩散效应消除方法[J]. 工程科学学报, 2021, 43(9): 1174-1181. DOI: 10.13374/j.issn2095-9389.2021.01.12.002
引用本文: 印象, 马博渊, 班晓娟, 黄海友, 王宇, 李松岩. 面向显微影像的多聚焦多图融合中失焦扩散效应消除方法[J]. 工程科学学报, 2021, 43(9): 1174-1181. DOI: 10.13374/j.issn2095-9389.2021.01.12.002
YIN Xiang, MA Bo-yuan, BAN Xiao-juan, HUANG Hai-you, WANG Yu, LI Song-yan. Defocus spread effect elimination method in multiple multi-focus image fusion for microscopic images[J]. Chinese Journal of Engineering, 2021, 43(9): 1174-1181. DOI: 10.13374/j.issn2095-9389.2021.01.12.002
Citation: YIN Xiang, MA Bo-yuan, BAN Xiao-juan, HUANG Hai-you, WANG Yu, LI Song-yan. Defocus spread effect elimination method in multiple multi-focus image fusion for microscopic images[J]. Chinese Journal of Engineering, 2021, 43(9): 1174-1181. DOI: 10.13374/j.issn2095-9389.2021.01.12.002

面向显微影像的多聚焦多图融合中失焦扩散效应消除方法

Defocus spread effect elimination method in multiple multi-focus image fusion for microscopic images

  • 摘要: 多聚焦图像融合是计算机视觉领域中的一个重要分支,旨在使用图像处理技术将同一场景下的聚焦不同目标的多张图像中各自的清晰区域进行融合,最终获得全清晰图像。随着以深度学习为代表的机器学习理论的突破,卷积神经网络被广泛应用于多聚焦图像融合领域,但大多数方法仅关注网络结构的改进,而使用简单的两两串行融合方式,降低了多图融合的效率,并且在融合过程中存在的失焦扩散效应也严重影响了融合结果的质量。针对上述问题,在显微成像分析的应用场景下,提出了一种最大特征图空间频率融合策略,通过在基于无监督学习的卷积神经网络中增加后处理模块,规避了两两串行融合中冗余的特征提取过程,实验证明该策略显著提高了多张图像的多聚焦图像融合效率。并且提出了一种矫正策略,在保证融合效率的情况下可有效缓解失焦扩散效应对融合图像质量的影响。

     

    Abstract: For a microscopic imaging scene, an all-in-focus image of the observation object is needed. Because of the limitation of the depth of field of the camera and the typically uneven surface of the observation object, an all-in-focus image is obtained through one shot with relative difficulty. In this case, an alternative method for obtaining the all-in-focus image is usually used, which is to fuse several images focusing on different depths with the help of multi-focus image fusion technology. Multi-focus image fusion is an important branch in the field of computer vision. It aims to use image processing technology to fuse the clear regions of multiple images, focusing on different objects in the same scene, and finally to obtain an all-in-focus fusion result. With the breakthrough of machine learning theory represented by deep learning, the convolutional neural network is widely adopted in the field of multi-focus image fusion. However, most methods only focus on improving network structure and use the simple one-by-one serial fusion method, which reduces the efficiency of multiple image fusion. In addition, the defocus spread effect in the fusion process, which causes blurred artifacts in the areas near focus map boundaries, can severely affect the quality of fusion results. In the application of microscopic imaging analysis, we proposed a maximum spatial frequency in the feature map (MSFIFM) fusion strategy. By adding a post-processing module in the convolution neural network based on unsupervised learning, the redundant feature extraction process in the one-by-one serial fusion is avoided. Experiments demonstrate that this strategy can significantly improve the efficiency of multi-focus image fusion with multiple images. In addition, we presented a correction strategy that can effectively alleviate the effect of defocus spread on the fusion result under the condition of ensuring the efficiency of the algorithm fusion.

     

/

返回文章
返回