大同矿区地应力测量及其与地质构造的关系

李长洪^{1,2)} 张吉良^{1,2)} 蔡美峰^{1,2)} 董 鹏²⁾ 关金龙²⁾ 张 永²⁾

北京科技大学金属矿山高效开采与安全教育部重点实验室,北京 100083
 北京科技大学土木与环境工程学院,北京 100083

摘 要 为了研究大同矿区在煤炭开采过程中煤和瓦斯突出形成的冲击地压、采矿工程围岩破坏等动力灾害的形成原因及 其防治对策,采用改进型 CSIRO 空心包体应变计,对大同矿区进行了四个测点的应力解除测量实验以及室内温度标定和围压 率定实验.根据实验结果,利用地应力计算机程序优化求解出每个测点地应力张量,再结合矿区地质构造分析地应力与矿区 地质构造的关系.通过研究,获得了大同矿区的地应力分布规律及其与地质构造的关系.
关键词 大同矿区;地应力;地质构造;构造应力;地应力测量

分类号 TU 458; TD 325

Measurement of in-situ stress and relationship between the stress and geologic structure in Datong mining area, China

LI Changhong^{1,2)}, ZHANG Jiliang^{1,2)}, CAI Maifeng^{1,2)}, DONG Peng²⁾, GUAN Jinlong²⁾, ZHANG Yong²⁾

1) Key Laboratory of the Ministry of Education of China for High-Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China

2) School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China

ABSTRACT In order to study the reasons and preventive measures of dynamic disasters such as shock bump and the destroy of rock mass in mining engineering resulted from the outburst of mash gas and coal during mining, stress relieving measurement and temperature and confining pressure calibration were made with improved CSIRO cells at 4 measurement points in Datong mining area. Based on the measured results the in-situ stress tensor of each point was computed by a special computer optimization program, and the relationship between in-situ stress and geological structure was analyzed with the geological structure factors of the mining area. The rules of in-situ stress distribution and the relationships between in-situ stress and geologic structure; tectonic stress; in-situ stress measurement

地应力是存在于地层中未受工程扰动的天然应 力,也是引起采矿工程围岩和支护结构变形与破坏 的根本作用力^[1-2].地应力的形成与地质构造有着 密切的关系^[3-4],它对岩爆以及煤和瓦斯突出形成 的冲击地压有重要影响.通过地应力测量,掌握地 应力空间分布的基本规律,为采用大型三维数值计 算模型研究地下采矿活动对围岩应力分布规律的影 响奠定坚实的基础.通过不同计算模型研究开采顺 序、采矿方法和围岩支护方式、支护时间、支护类型 以及围岩应力集中与岩爆、煤和瓦斯突出的关系,优 化开采顺序和采矿方法等,从而减少采矿工程围岩 的破坏及危害^[1,5],预测预防岩爆以及煤和瓦斯突 出形成的冲击地压,提高资源回收率,保证井下作业 安全,对整体提高采矿的经济效益和社会效益有着 重要的意义.

1 空心包体应变计测量地应力的基本原理

本文采用应力解除法测量地应力,其应变计探 头为改进型 CSIRO 空心包体应变计.空心包体应 变计结构见图 1^[2,6].其主体是一个用环氧树脂制 成的壁厚 0.003 m 的空心圆筒,其外径为 0.036 5 m,内径为 0.030 5 m.在其中间部位,即直径0.032 5 m 处沿同一圆周等间距(120°)嵌埋着三个电阻应变 花.每个应变花由四支应变片组成,相互间隔 45°. 共计有 12 支应变片,分别为周向三支(A₉₀, B₉₀,

收稿日期: 2006-11-20 **修回日期**: 2007-01-09 **基金项目**:国家自然科学基金资助项目(No. 50074002) **作者简介**:李长洪(1962-),男,教授,博士生导师

*C*₉₀)、轴向三支(*A*₀, *B*₀, *C*₀)、与轴线成45°方向三支 支(*A*₄₅, *B*₄₅, *C*₄₅)以及与轴线成135°方向三支 (*A*₁₃₅, *B*₁₃₅, *C*₁₃₅).其中,*A*₀、*B*₀、*C*₀是在孔周互 成120°的三个位置独立测量轴向应变,*A*₉₀、*B*₉₀、 *C*₉₀是在孔周互成120°的三个位置独立测量周向应 变, A₄₅、B₄₅、C₄₅是在孔周互成 120°的三个位置独 立测量与轴线成 45°方向应变, A₁₃₅、B₁₃₅, C₁₃₅是在 孔周互成 120°的三个位置独立测量与轴线成 135° 方向应变.

图 1 改进型 CSIRO 空心包体应变计结构示意图 Fig.1 Schematic diagram of the structure of a modified CSIRO cell

毎组应变花地应力计算公式如下^[2]:

$$\epsilon_{\theta} = \frac{1}{E} \{ (\sigma_x + \sigma_y) k_1 + 2(1 - v^2) [(\sigma_y - \sigma_x) \cos 2\theta - v + 2 \cos 2\theta - v +$$

$$2\tau_{xy}\sin 2\theta] \mathbf{k}_2 - \upsilon \sigma_z \mathbf{k}_4 \}$$
(1)

$$\mathbf{\varepsilon}_{z} = \frac{1}{E} \left[\mathbf{\sigma}_{z} - \mathbf{v} (\mathbf{\sigma}_{x} + \mathbf{\sigma}_{y}) \right]$$
(2)

$$\gamma_{\theta_z} = \frac{4}{E} (1 + \upsilon) (\tau_{yz} \cos \theta - \tau_{zx} \sin \theta) k_3 \qquad (3)$$

式中, ϵ_0 , ϵ_z 和 γ_0 分别为空心包体所测周向应变、轴向应变和剪切应变值, $k_1 \sim k_4$ 为计算修正系数.

三组应变花可得到 12 个不同位置和方向恢复 的应变值,可列 12 个方程.如果是精确测量,理论 上 12 个方程只有六个独立方程,其他方程可用这六 个独立方程线性表示.但是任何测量均有误差,利 用数理统计的最小二乘法原理,通过计算机程序优 化求最优解,求解出地应力的六个分量,即一个单孔 测量即可测得一点的三维应力状态.

2 地应力测量及其结果

2.1 现场地应力解除实验及应变测量结果

应力解除的目的是获得测点岩芯在解除应力作 用后恢复的应变.以此为基础,进一步研究该点的 应力大小和方向,获得完全解除的稳定应变是正确 计算地应力的前提.根据地应力测量选点原则^[7-8],在一矿和三矿各进行一个点的地应力解除 测试:一矿测点(1K)坐标(4437173,547906,955), 埋深 364m;三矿测点(3K)坐标(4433270,542690, 1043),埋深 360m.在五矿进行两个点的地应力解 除测试:五矿西二一斜井附近测点(5K⁻⁻XEXF)坐标 (4437000,551550,888),埋深 352m;五矿东三火药 库附近测点(5K⁻⁻DSHF)坐标(4438050,552490, 895),埋深 370m.共计四个测点.

由于篇幅所限,本文仅以五矿西二一斜井附近 测点的实测数据为例予以阐述,图2是根据该测点 应力解除数据绘制得到的应力解除曲线.

根据测点的应力解除曲线及数据采集器的记录 数据,各个测点的各个方向应变计的最终稳定应变 值见表 1.

2.2 室内温度标定实验与围压率定实验

2.2.1 温度标定实验及其结果

应力解除过程中测点岩芯有复杂的热交换,包 括钻头和岩石有剧烈摩擦产生热量、冷却水吸收热 量.摩擦产生热量又与钻头材质、岩石硬度、钻进速

图 2 五矿西二一斜井附近测点应力解除曲线

度和转速等因素相关·温度产生两个结果:其一,使 岩芯产生温度应力引起附加应变;其二,直接引起应 变片变化·两者影响是相反的,但谁占优势因地而 异,十分复杂·因而,需要对数据进行温度校正·为 了剔除温度造成的应变,在空心包体应变计靠近应 变片的部位放置一个热敏电阻,用以感知温度的变 化·各地应力测点实测温度变化是五矿西二一斜井 附近测点为 1.9℃,五矿东三火药库附近测点为 1.8℃,一矿测点 2.2℃,三矿测点为 2.6℃.应力 解除完成后,再在实验室内可调温的恒温箱中模拟 现场的温度变化,测定温度造成的附加应变,然后将 这部分附加应变值从应力解除过程中测得的最终稳 定应变值中剔除出去,即可获得真正由于应力解除 引起的应变值·表²为各测点各应变片的温度应变 率测定结果,表³为各测点各应变片的温度应变值.

表1 各测点应变计测得的最终稳定应变值

			Tat	le I Fina	steady stra	ain values a	t the measu	uring points				10 *
测点	A 0	A 45	A 90	A_{135}	B 0	B_{45}	B_{90}	B_{135}	C_0	C_{45}	C_{90}	C_{135}
5K-XEXF	131	119	450	441	141	294	301	155	147	323	339	145
5K-DSHF	135	507	740	371	118	217	391	315	128	347	618	402
1 K	14	305	698	—	24	243	386	169	21	271	451	201
³ K	172	207	254	199	161	224	275	196	185	239	285	221

表2 各测点各应变片的温度应变率测定结果

 Table 2
 Temperature strain ratio at the measuring points

 10^{6} °C $^{-1}$

 10^{-6}

测点	A_0	$A_{ m 45}$	A 90	A 135	B_0	B_{45}	B_{90}	B_{135}	C_0	C_{45}	C_{90}	C_{135}
5K-XEXF	-8.95	-7.89	-1.56	-12.63	-2.63	-7.37	-5.79	-10.00	0.00	-5.79	-3.68	-7.37
5K-DSHF	-3.89	-12.22	-16.67	-7.22	-11.67	-4.44	-6.11	-2.22	-6.67	-7.22	-11.67	-9.44
$1 \mathrm{K}$	-4.55	-5.00	-29.55	_	-0.45	-0.91	-1.36	-0.45	-0.91	-1.36	-0.91	0.00
3 K	-5.77	-4.23	-0.38	-6.92	-9.62	-5.00	-5.38	-15.38	0.00	0.00	-2.31	-5.38

表 3	各测点各应变片的温度应变值
衣り	谷侧只合应受力的温度应受能

 Table 3
 Temperature strain at the measuring points

								01				
测点	A 0	A 45	A 90	A 135	B_0	$m{B}_{45}$	B_{90}	B_{135}	C_0	C_{45}	C_{90}	C_{135}
5K-XEXF	-17	-15	-3	-24	-5	-14	-11	-19	0	-11	-7	-14
5K-DSHF	-7	-22	-30	-13	-21	-8	-11	-4	-12	-13	-21	-17
1 K	-10	-11	-65	—	-1	-2	-3	-1	-2	-3	-2	0
3 K	-15	-11	-1	-18	-25	-13	-14	-40	0	0	-6	-14

从温度标定实验结果可以看出,由于应力解除 过程中测点温度变化所引起的应变值(绝对值)最大 可达 65×10⁻⁶,可见对于地应力测量来讲,温度是 不容忽视的影响因素.由应力解除过程中测得的应 变值在经过温度影响修正之后,便获得由于应力解 除引起的应变计在各方向的应变值见表 4.

2.2.2 围压率定实验及其结果

图³是五矿西二一斜井附近测点套孔岩芯围压 率定曲线,即围压一应变曲线.用现场套孔解除得到 的并带有应变计的原始岩芯,进行实验室围压率定 实验.围压率定曲线提供了许多重要信息:与钻孔 轴线成相同角度方向的应变值非常接近,并且周向 为压缩应变,轴向为拉伸应变,斜向为压缩应变,但 应变值小于周向应变;另外,围压一应变曲线具有较 好的线性关系.图3表明在实验中应变计内各应变 片的工作状态是正常的,现场应力解除结果具有较好的规律性和稳定性.

表4 各测点用于计算地应力的最终应变数据

			Tab	le 4 Final	strain at th	ne measurin	g points for	r computing	ſ			10^{-6}
测点	A 0	A 45	A 90	A 135	B_0	B_{45}	B_{90}	B 135	C_0	C_{45}	C_{90}	C_{135}
5K-XEXF	148	134	453	565	146	308	312	174	147	334	346	159
5K-DSHF	142	529	770	384	139	225	402	319	140	360	639	419
$1 \mathrm{K}$	24	316	763	—	25	247	389	170	23	274	453	201
3 K	187	218	255	217	186	237	289	236	185	239	291	235

suring point near Wukuang west⁻²¹ incline shaft

2.3 地应力测量计算结果

根据现场实测应变值、室内温度标定及围压率

定后,获得最终用于计算的应变值.采用最小二乘 法原理,先通过地应力计算机程序优化求解出地应 力的六个分量,再计算各测点主应力以及各测点最 大剪应力和侧压系数.其结果分别示于表 5~7.

表5 各测点应力分量计算结果

Table 5	Computed stres	ss of the measuring	j points

and be	正	主应力/M	Pa		剪应力/MPa					
测点	σ_x	σ_y	σ_{z}	τ_{xy}	τ_{yz}	τ_{zx}				
5K-XEXF	11.56	8.54	7.29	-2.48	-0.04	0.03				
5K-DSHF	12.64	11.47	8.79	-0.88	0.32	0.02				
$1 \mathrm{K}$	9.78	7.81	7.78	-2.79	0.54	-0.97				
3 K	10.37	8.34	6.93	-2.81	-0.18	0.24				

注:X的正向指北,Y的正向指东,Z的正向指下.

表 6 各测点主应力计算结果 Table 6 Computed principal stress of the measuring points

and I-	t	最大主应力 o	1	i	中间主应力 σ₂		1	最小主应力 o	3
测点	数值/MPa	方向/(°)	倾角/(°)	数值/MPa	方向/(°)	倾角/(°)	数值/MPa	方向/(°)	倾角/(°)
5K-XEXF	12.95	330.7	0.5	7.29	56.7	-83.0	7.14	60.7	7.3
5K-DSHF	13.11	331.7	-1.8	11.04	241.4	-7.5	8.74	255.0	82.3
$1 \mathrm{K}$	12.05	325.0	-14.5	7.50	310.0	75.0	5.83	54.0	3.7
3 K	12.36	324.9	3.2	6.91	164.8	86.6	6.37	55.0	1.1

表7 各测点最大剪应力和侧压系数计算结果

 Table 7
 Computed result of the biggest shearing stress and side pres

sure coefficient of the measuring points

测点	最大剪应力/MPa	侧压系数,λ
5K-XEXF	2.905	1.635
5K-DSHF	2.185	1.500
1 K	3.110	1.607
3 K	2.995	1.789

3 实测地应力与地质构造的关系

一矿井田构造简单,断裂以 NNE 断层最为发育,断层落差也比较大.断层面舒缓波状,往往有断层泥、擦痕等出现,具有多期活动特征.井田内 NNE 断层也是受燕山运动影响而生成^[9].一矿地 应力测点最大主应力方向为 325.0°,且近于水平, 它的倾角为一14.5°,说明一矿测点最大水平挤压应 力方向由 SE-NW 向 SSE-NNW 略有转动.因此该 井田是对燕山构造运动时期地质应力 SE-NW 水平 挤压应力的继承和发展,并以继承为主.

三矿井田位于大同煤田东缘,井田内地层厚度 变化服从于大同煤田总体格局.井田东及东南部地 层倾角较大,一般在30°以下.三矿井田地层、褶曲、 断裂的形态特征是一致的,地层走向、倾角及倾角的 变化受大同煤田向斜主轴控制,褶曲和断裂的分布 及形态同样受向斜主轴和边缘主干断裂带的控制和 影响.井田的主体断裂构造是 NE 向断裂,井田内 NE 向断层主要受燕山运动影响而生成^[9-10].三矿 地应力测点最大主应力方向为 324.9°,接近水平, 倾角 3.2°,说明三矿测点最大水平挤压应力方向由 SE⁻NW 向 SSE⁻NNW 略有转动.因此该井田是对 燕山构造运动时期地质应力 SE⁻NW 水平挤压应力 的继承和发展,并以继承为主.

五矿井田的褶皱、断层构造复杂, 主断裂呈右 旋雁型排列,其走向错位处有近平行交错段,在此段 间有很多走向为 NE 方向的羽状小断裂. 在主向斜 轴的西翼,则为一系列 NE 向小型褶皱区,向斜轴消 失端在雁列主断裂的最大落差处,背斜消失端在主 断层落差较小处或雁列错开处,这些构造形迹无疑 是受 SE-NW 主压应变的结果,表现出该煤田主要 地质应力是 SE-NW 水平挤压应力,属燕山构造运 动时期[11]. 五矿西二一斜井附近测点和东三火药 库附近测点实测结果是最大主应力方向分别为 330.7°和331.7°, 且近于水平, 它们的倾角分别为 0.5°和-1.8°,说明五矿西二一斜井附近测点和东 三火药库附近测点最大水平挤压应力受 NE-SW 的 挤压应力影响,其方向由 SE-NW 向 SSE-NNW 有 转动. 因此该井田是对燕山构造运动时期地质应力 SE-NW 水平挤压应力的继承和发展,并以发展 为主.

4 结论

(1)综合以上分析可知,一矿、三矿、五矿最大 水平挤压应力方向基本上为SE⁻⁻NW向,但后期有 发展,均有向SSE⁻⁻NNW转动的变化趋势,这种变 化是对燕山构造运动时期构造应力SE⁻⁻NW水平挤 压应力的继承和发展.

(2)最大水平主应力的方向在 324.9~331.7° 范围内变化,其数值在 12.05~13.11 MPa 范围内变 化,四个测点的侧压系数在 1.500~1.789 范围内变 化.表明该矿区水平构造应力较大,水平构造应力 占主导地位.在采用综放开采时,这种应力分布特 征是采区工作面和回风巷(顺槽)形成冲击地压(煤 爆)的力学原因.

(3) 竖向主应力有三个测点为中间主应力,一 个测点为最小主应力,其倾角在 75.0~86.6°范围 内变化,数值在 6.91~8.74 MPa 范围内变化,接近 上覆岩体自重应力.

(4)最小水平主应力有三个测点为最小主应力,其方向在54.0~60.7°范围内变化,数值在5.83~7.14 MPa范围内变化,接近上覆岩体自重应力.最小水平主应力有一个测点为中间主应力,其倾角为-7.5°,方向为241.4°,数值为11.04 MPa.

(5) 最大剪应力较大,均大于 2 MPa,其中有三

个点的最大剪应力达到³MPa 左右.

(6)每个测点均有两个主应力接近于水平方向,其倾角在0.5~14.5°范围内变化;一个主应力接近于竖直方向,其倾角在75.0~86.6°范围内变化.

参考文献

- [1] Cai M F, Qiao L, Li C H, et al. Results of in situ stress measurement and their application to mining design at five metal mines. Int J Rock Mech Min Sci, 2000, 37(3): 509
- [2] Cai M F. Principle and Technology of In-situ Stress Measurement. Beijing: Science Press, 2000 (蔡美峰. 地应力测量原理和技术. 北京:科学出版社, 2000)
- [3] Li C H. Tectonic stress analysis and its engineering meaning. *Miner Resour Geol*, 1995, 9(3): 195
 (李长洪·构造应力分析及其工程意义·矿产与地质, 1995, 9

 (3): 195)
- [4] Cai M F, Qiao L, Li C H. Measuring results and regularity of insitu stress in Xincheng gold mine. Nonferrous Met, 2000, 52 (3):1
 (蔡美峰,乔兰,李长洪. 新城金矿地应力场测量及其分布规律研究. 有色金属,2000, 52(3):1)
- [5] Ouyang Z H, Cai M F, Li C H. Measuring of in-situ stress and disturbance stress in Beiminghe iron mine of China. China Min Mag, 2005, 14(12): 67
 (欧阳振华,蔡美峰,李长洪.北洺河铁矿地应力与采动应力测 量.中国矿业, 2005, 14(12): 67)
- [6] Cai M F, Qiao L, Yu Bo, et al. Stress measurement with an improved hollow inclusion technique in Jinchuan nickel mine. J Univ Sci Technol Beijng, 2000, 7(3): 157
- [7] Li C H. In-situ Stress Field Study and Comparison on Xishimen Iron Ore and Xincheng Gold Mine [Dissertation]. Beijing: University of Science and Technology Beijing, 1993.
 (李长洪.西石门铁矿与新城金矿地应力场研究及其比较[学位 论文].北京:北京科技大学, 1993)
- [8] Qiao L, Ouyang Z H, Lai X P, et al. In-situ stress measuring and its result analysis in Sanshandao gold mine of China. J Univ Sci Technol Beijing, 2004, 26(6): 569 (乔兰,欧阳振华,来兴平,等,三山岛金矿采空区地应力测量 及其结果分析,北京科技大学学报,2004, 26(6): 569)
- [9] Wang J W, Guo J L. Mine Production Geological Reports of Datong Coal Mine Group Co. Ltd. Datong: Coal Geological Prospecting Company of Shanxi, 2003 (王晋伟,郭景林·大同煤业股份有限公司生产矿井地质报告. 大同:山西省煤炭地质公司, 2003)
- [10] Wang G X, Liu C L. Tongjialiang Coal Mine Production Geological Reports of Datong Coal Mine Group Co. Ltd. Datong: Tongjialiang Coal Mine of Datong Coal Mine Group Co. Ltd. and Coalfield Geological Exploration Team ¹¹⁵ of Shanxi, 2003 (王国新,刘存林.大同煤矿集团有限责任公司同家梁煤矿生 产矿井地质报告.大同:大同煤矿集团有限责任公司同家梁煤 矿和山西煤田地质勘探 ¹¹⁵ N, 2003)
- [11] Chen Z R, Li C Y. Xinzhouyao Mine Geological Reports of Datong Mining Bureau. Datong: Xinzhouyao Coal Mine, 1994 (陈哲仁,李长义.大同矿务局忻州窑矿矿井地质报告.大同: 忻州窑煤矿.1994)