TC4 钛合金压坯的吸氢行为

任学平1) 郭青苗1) 侯红亮2) 章芳芳1)

1) 北京科技大学材料科学与工程学院,北京 100083 2) 北京航空制造工程研究所,北京 100024

摘 要 利用管式氢处理炉研究了 TC4 钛合金压坯的温度一平衡氢分压关系以及吸氢动力学行为,测定了吸氢速率常数和激活能,并分析了吸氢反应各个阶段的反应机理.结果表明,随着吸氢温度的升高,达到平衡所需要的时间缩短,吸氢后的平衡 氢分压升高.在 350 ℃吸氢时,反应机制分别是形核长大、幂函数定律和三维扩散.在 400 ℃吸氢时,反应机制分别是幂函数 定律和三维扩散.在 450~750 ℃吸氢时,反应机制均是三维扩散.TC4 钛合金压坯吸氢反应的激活能为 14.55 kJ•mol⁻¹. 关键词 钛合金;吸氢;动力学行为;反应机制;活化能 分类号 TC 146.2⁺3

Hydrogen absorption behavior of TC4 compacts

REN Xue⁻ping¹), GUO Qing⁻miao¹), HOU Hong⁻liang²), ZHANG Fang⁻fang¹)

1) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

2) Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024, China

ABSTRACT The relation of equilibrium hydrogen pressure with temperature and the hydrogen absorption kinetic behavior of TC4 compacts were investigated with a tubular hydrogen treatment furnace. The rate constant, reaction mechanisms and activation energy of hydrogen absorption at different temperatures were also determined. It is found that the time to reach equilibrium decreases with increasing temperature, but the equilibrium hydrogen pressure increases with increasing temperature. The hydrogen absorption process at $350 \,^{\circ}\text{C}$ is controlled by the nucleation and growth, power law and three-dimensional diffusion, the hydrogen absorption process at $400 \,^{\circ}\text{C}$ is controlled by the power law and three-dimensional diffusion, while the hydrogen absorption process from 450 to $750 \,^{\circ}\text{C}$ is only controlled by the three-dimensional diffusion. The activation energy for hydrogen absorption by TC4 compacts is found to be $14.55 \,\text{kJ} \cdot \text{mol}^{-1}$.

KEY WORDS titanium alloys; hydrogen absorption; kinetic behavior; reaction mechanism; activation energy

氢处理技术在钛合金的热加工、机械加工、粉末固结、复合材料制备和微观组织细化等方面具有广阔的应用前景^[1-2]. 在粉末固结领域的研究表明, 置氢可以降低钛合金粉末的固结温度和压力,细化 组织,缩短过程时间,不仅改善了钛粉固结工艺,而 且制件性能也有相应提高^[3-5].因此,置氢钛合金 粉末固结技术受到了广泛重视.

国内外学者对致密钛合金吸氢动力学进行了深入研究^[6-7],但关于多孔 TC4 钛合金吸氢动力学的研究较少·一般的置氢钛合金粉末固结工艺为"混粉(置氢粉)一压形一烧结",本文中将其改为"混粉

(未置氢)一压形一置氢一烧结"的新工艺,可以充分 利用充氢前钛合金粉末所具有的良好压制性能,获 得良好的TC4 钛合金预形坯.为了完善TC4 钛合 金压坯的置氢过程,需要研究其吸氢行为,从反应动 力学的角度分析吸氢反应的速率.

合金氢化反应的动力学与温度和初始氢分压有 关,可通过改变温度和初始氢分压来研究合金氢化 反应的机制和速率控制步骤^[8-9].本文通过分析 TC4 钛合金压坯在不同吸氢温度下的吸氢动力学 行为,研究了吸氢温度对 TC4 钛合金压坯的吸氢速 率的影响,求解出了吸氢反应的表观活化能.这不

收稿日期: 2008-10-28

基金项目:国家重点基础研究发展规划资助项目(No.11AZ6305)

作者简介: 任学平(1957-), 男, 教授, 博士生导师, E-mail: rxp^{33@}mater.ustb.edu.cn

仅对深入研究多孔钛合金置氢加工改性机理具有重要的参考价值,而且为置氢钛合金的粉末固结工艺的控制与优化奠定了基础.

1 实验材料及方法

1.1 样品制备和实验过程

实验材料采用氢化脱氢法制备的粉末 TC4 钛 合金,在相同的压力条件下,将粉末 TC4 钛合金压 制成相对密度^[10] d=0.826 的多孔压坯试样,试样 尺寸 $\phi 20$ mm,质量为 25 g.表面经丙酮清洗去除油 污,放入管式氢处理炉在 300~750 ℃温度下进行吸 氢动力学实验.

采用定容变压法测定 TC4 钛合金压坯的吸氢 动力学行为.吸氢实验时,先将试样放入置氢炉内, 抽真空至 10⁻³ Pa,以 10 ℃ •min⁻¹升温速度加热至 设定温度,按设定的初始氢分压充入氢气,并保温 1 h,使氢在 TC4 钛合金压坯中均匀化后,随炉冷却至 室温,抽真空后冲入氮气出炉.实验时,系统的容积 保持恒定,氢气压力的变化由高灵敏度的压力计测 定,通过压力的变化计算出反应分数的变化.

1.2 动力学分析方法

钛合金的吸氢动力学受温度、压力和试样表面 状态的影响.吸氢过程中,氢化物的形成基本包括 以下几个步骤^[8,11]:(1)H₂分子到达合金表面,在合 金表面发生物理吸附;(2)吸附在表面的 H₂分子分 解为 H 原子(离子状态),在表面发生化学吸附; (3)化学吸附态的原子向金属晶格中迁移,H 原子与 Ti 形成钛氢化物;(4)H 原子通过氢化物层进一步 扩散.通常研究动力学的方法是用各种速率方程来 拟合时间一反应分数 $\alpha(t)$ 的关系,以确定反应机制 或控制速率的关键步骤.气固反应的动力学方程可 以表达为^[12]:

$$\frac{\mathrm{d}\,\alpha}{\mathrm{d}\,t} = kf(\alpha) \tag{1}$$

式中, α 为反应分数, $f(\alpha)$ 为反应机制函数, k 为反应速率常数.

对式(1)积分可得:

$$g(\alpha) = \int \frac{\mathrm{d}\,\alpha}{f(\alpha)} = kt \tag{2}$$

式中, $f(\alpha)$ 或 $g(\alpha)$ 代表化学反应、扩散、形核和长大的42种反应机制函数^[12].

根据吸氢曲线的实验数据可以计算出反应分数 α,如下式所示:

$$\alpha = (p_0 - p_t) / (p_0 - p_{eq})$$
(3)

式中, p_0 为初始氢分压, p_t 为t时刻的氢分压, p_{eq}

为吸氢达到平衡时的氢分压.

利用式(1)或式(2)对 $\alpha - t$ 动力学曲线中的实 验数据 t、 α 和 d α/dt 进行线性回归,相关性最好的 函数 $f(\alpha)$ 或 $g(\alpha)$ 可认为是吸氢反应的机制函数, 并得到吸氢速率常数 k.

2 实验结果及讨论

2.1 氢分压随吸氢温度的变化

图 1 为不同温度下的 TC4 钛合金压坯的吸氢 动力学曲线.实验时假设充氢是在瞬间完成,则可 忽略充氢阶段钛合金压坯吸氢对氢分压的影响.从 图 1 中可看出,TC4 钛合金压坯在 300 ℃时基本不 吸氢,在 350 ℃时开始吸氢且较缓慢,可认为钛合金 压坯的开始吸氢温度为 350 ℃,与致密 TC4 钛合金 压坯开始吸氢温度相比较低^[13],与 TC4 钛合金粉 末相比则较高^[14].由于钛合金压坯吸氢过程是一 个放热过程,吸氢反应的平衡向反应物的方向移动, 因此平衡氢分压随着温度的升高而升高.

Fig.1 Hydrogen absorption kinetic curves of TC4 compacts at different temperatures

2.2 吸氢动力学机制的判定

图 2 为 TC4 钛合金压坯在不同吸氢温度下反 应分数随时间的变化曲线. 从图 2 中可以看出,在 实验温度分别为 350,400,450,550,650 和 750 ℃下 吸氢反应 15 min 时,反应分数分别达到了 0.656, 0.882,0.886,0.922,0.943 和 1. 这表明吸氢温度 越高,吸氢达到平衡的时间越短.

图 ³ 为TC⁴ 钛合金压坯在不同吸氢温度下吸 氢速率随时间的变化曲线.吸氢过程一般包括三个 阶段:诱导期(Ⅰ)、第1吸氢阶段(Ⅱ)和第2吸氢阶 段(Ⅲ).由图 ³ 可看出,初始吸氢速率随着吸氢温 度的升高而增大.在 ³⁵⁰ ^C 吸氢时,初始阶段吸氢 速率较低且基本不变,随吸氢时间的延长,吸氢速率 逐渐增至最大,氢分压趋于平衡时,吸氢速率则降至

最低.这表明TC4 钛合金压坯在 350 ℃吸氢时,吸 氢过程表现为 I、II 和III.在 400 ℃吸氢时,初始吸 氢速率较低,随着时间延长而增至最大,氢分压趋于 平衡时,吸氢速率则降至最低,吸氢过程仅表现为 II 和III.当吸氢温度在 450 ℃或者高于 450 ℃时,实验 一开始吸氢速率就达到最大,随着实验的进行,氢分 压趋于平衡氢分压,吸氢速率降低,吸过程只表现为 III.这是由于吸氢温度越低,表面活性和形核速率越 低,导致诱导期越长,限制了吸氢过程;而随着吸氢温

图 3 不同温度下 TC⁴ 钛合金压坯的吸氢速率曲线 Fig-3 Hydriding rate curves of TC⁴ compacts at different temperatures

度的升高,形核速率升高,诱导期急剧缩短甚至消失.

吸氢反应过程中,吸氢动力学曲线在某些范围 内呈一定的线性关系,每个线性部分都代表着被不 同反应机制所控制的反应过程.为了更明确地研究 不同吸氢温度下的吸氢机制,用文献[12]中所列出 42种吸氢速率方程逐个对根据图 4 所判断出的不 同吸氢阶段的反应分数进行拟合,拟合后相关系数 最大、标准差最小的方程被认为是该吸氢阶段的动 力学反应机制.图 4~6 是在不同吸氢温度下,不同

图 4 TC4 钛合金压坯在 350 ℃吸氢时不同吸氢阶段的反应机制方程与时间的关系 .(a)第 I 阶段;(b)第 II 阶段;(c)第 II 阶段 Fig. 4 Relations of reaction mechanism function with time in different hydriding reaction stages of TC4 compacts at 350 ℃; (a) the first stage; (b) the second stage; (c) the third stage

图 5 TC4 钛合金压坯在 400 ℃吸氢时不同吸氢阶段的反应机制方程与时间的关系. (a) 第Ⅱ阶段;(b) 第Ⅲ阶段 Fig. 5 Relations of reaction mechanism function with time in different hydriding reaction stages of TC4 compacts at 400 ℃; (a) the second stage; (b) the third stage

图 6 TC4 钛合金在 450, 550, 650 和 750 ℃吸氢时第Ⅲ阶段的 反应机制方程与时间的关系

Fig.6 Relations of reaction function mechanism with time in the third stage of TC4 compacts at 450, 550, 650 and 750 $^{\circ}$ C

吸氢阶段拟合相关性最好的曲线结果.

由图 4~6 可以看出:在 350 ℃时, 钛合金压坯 的吸氢反应机制主要是由形核长大、幂函数定律和 三维扩散组成;在 400 ℃时, 反应机制主要是由幂函 数定律和三维扩散组成; 当反应温度 T≥450 ℃时, 反应机制由三维扩散主导·不同温度下的吸氢动力 学参数、反应机制与方程如表 1 所示·

2.3 激活能的求解

若在不同温度条件下反应机制相同,则式(1)中的反应速率常数 k 满足 Arrhenius 公式^[15]:

$$k = A e^{-\frac{k}{RT}}$$
(4)

式中, k 为反应速率常数, A 为指前因子, E 为表观 活化能, R 为摩尔气体常量, T 为热力学温度.

Table 1	Table 1 Kinetic parameters, reaction mechanisms and reaction equations for hydriding in TC4 compacts at different temperatures					
吸氢温度/℃	反应阶段	反应机制	反应方程	反应速率常数 $/min^{-1}$	相关系数	
350	Ι	形核长大	$[-\ln(1-\alpha)]^{2/3}(0 \le \alpha \le 0.09)$	0.02783	0.99218	
	П	幂函数定律	$\alpha^{1/4}(0.09 \le \alpha \le 0.5)$	0.04192	0.99156	
	Ш	三维扩散	$1-2 \alpha/3 - (1-\alpha)^{2/3} (0.5 \le \alpha \le 1)$	0.01513	0.99076	
400	П	幂函数定律	$\alpha^{1/2} (0 \le \alpha \le 0.27)$	0.25797	0.99944	
	Ш	三维扩散	$1 - 2 \alpha/3 - (1 - \alpha)^{2/3} (0.27 \le \alpha \le 1)$	0.01016	0.99196	
450	Ш	三维扩散	$1-2 \alpha/3 - (1-\alpha)^{2/3} (0 \le \alpha \le 1)$	0.01089	0.99536	
550	Ш	三维扩散	$1-2 \alpha/3 - (1-\alpha)^{2/3} (0 \le \alpha \le 1)$	0.01364	0.99908	
650	Ш	三维扩散	$1-2 \alpha/3 - (1-\alpha)^{2/3} (0 \le \alpha \le 1)$	0.01614	0.99699	
750	Ш	三维扩散	$1-2 \alpha/3 - (1-\alpha)^{2/3} (0 \le \alpha \le 1)$	0.02298	0.99439	

表1 TC4 钛合金在不同温度下的吸氢动力学参数、反应机制和方程

对式(3)两边取自然对数得:

$$\ln k = \ln A - \frac{E}{RT} \tag{5}$$

对一组温度下的反应速率常数以 ln k 对 1/T 作图,线性拟合后由直线的斜率就可以计算出合金 吸氢的活化能 E.

由于在 450, 550, 650 和 750 ℃这四个温度下 TC4 钛合金压坯吸氢时反应机制相同,因此这四个 温度下反应速率常数 k 满足 Arrhenius 公式·图 7 为TC4 钛合金压坯的吸氢反应的 Arrhenius 曲线· 根据上述方法,求得 TC4 钛合金压坯的吸氢表观活 化能 $E=14.55 \text{ kJ} \cdot \text{mol}^{-1}$.可以发现 TC4 钛合金压 坯的吸氢激活能低于致密 α —钛合金激活能(51.8 kJ $\cdot \text{mol}^{-1}$)^[7]和 β —钛合金的激活能(27.6 kJ $\cdot \text{mol}^{-1}$)^[16],说明 TC4 钛合金压坯较致密钛合金容 易吸氢.这是由于 TC4 钛合金压坯的吸氢激活能领 活能较低.

图 7 TC4 钛合金压坯的吸氢反应的 Arrhenius 曲线 Fig.7 Arrhenius plot for hydriding reaction of TC4 compact

3 结论

(1) TC4 钛合金压坯吸氢时,随着吸氢温度的 升高,达到平衡所需要的时间缩短,吸氢后平衡氢分 压升高.

(2) 在 350 ℃吸氢时,吸氢反应机制分别是形

 $-2\alpha/3 - (1 - \alpha)^{3/2}$

0.35

0.30

0.25

0.20

0.10

0.05

核长大、幂函数定律和三维扩散;在400℃吸氢时, 反应机制分别是幂函数定律和三维扩散;在450~ 750℃吸氢时,反应机制均是三维扩散.

(3) 在 450~750 ℃范围内得出的 TC4 钛合金 压坯的吸氢激活能为 14.55 kJ •mol⁻¹.

参考文献

- Senkov O N. Frones F H. Thermohydrogen processing of titanium alloys. Int J Hydrogen Energy, 1999, 24(6):565
- [2] Eliaz N, Eliezer D, Olson D L. Hydrogen assisted processing of materials. Mater Sci Eng A, 2000, 289: 41
- [3] Hou H L, Li Z Q, Wang Y J, et al. Technology of hydrogen treatment for titanium alloy and its application prospect. Chin J Nonferrous Met, 2003, 13(3):533 (侯红亮,李志强,王亚军,等. 钛合金热氢处理技术及其应用前 景. 中国有色金属学报, 2003, 13(3):533)
- [4] Zhao J Q, Nan H, Huang D. Progress in technologies for preparation of Ti alloy and Ti alloy parts with Ti alloy powder by hydrogen alloying. Spec Cast Nonferrous Alloys, 2007, 27(8):593 (赵嘉琪,南海,黄东.氢合金化钛合金粉末成形制件技术的发展.特种铸造及有色合金,2007,27(8):593)
- [5] Azevedo C R F, Rodrigues D, Beneduce N F · Ti-Al-V powder metallurgy (PM) via hydrogenation-dehydrogenation (HDH) process. J Alloys Compd., 2003, 353: 217
- [6] Huang L J, Yu B X, Gao S J. Kinetics of hydrogen absorption and desorption by titanium. *Met Funct Mater*, 1998, 3(4):124
 (黄利军,虞炳西,高树浚. 钛吸氢和放氢动力学. 金属功能材 料, 1998, 3(4):124)
- $\label{eq:alpha} \left[\begin{array}{c} 7 \end{array} \right] \quad Parazoglou \ T \ P \ Hepworth \ M \ T \ Diffusion \ of \ hydrogen \ in \ \alpha\mathchar`-titani-$

um · Trans Metall Soc AIME, 1968, 242, 682

- [8] Inomata A, Aoki H, Miura T. Measurement and modeling of hydriding and dehydriding kinetics. J Alloys Compd., 1998, 278, 103
- [9] Kuo C C, Qian L, Qin L, et al. Kinetics of absorption and desorption of hydrogen in alloy powder. Int J Hydrogen Energy, 2005, 30,301
- [10] Huang P Y. Pow der Metallurgy Principle.Beijing: Metallurgical Industry Press, 2004:133
 (黄培云·粉末冶金原理·北京:冶金工业出版社, 2004:133)
- [11] Shi L Q, Zhao G Q, Zhou Z Y, et al. The kinetics of hydrogen interaction with thin films. At Energy Sci Technol, 2000, 34 (3): 216
 (施立群,赵国庆,周筑颖,等.储氢薄膜的吸氢动力学研究. 原子能科学技,2000, 34(3):216
- [12] Qian L, Kuo C C, Qin L, et al. Hydrogen absorption and desorption kinetics of Ag-Mg-Ni alloys. Int J Hydrogen Energy, 2004, 29: 843
- [13] Cao X M, Zhao Y Q, Xi Z P. Application of thermohydrogen treatment for casting titanium alloys. Foundry, 2005, 54(5): 391
 (曹兴民,赵永庆,奚正平.热氢处理在铸造钛合金中的应用.

(曹兴氏,赵永庆,奏止平·热氢处理在铸造钛合金甲的应用-铸造,2005,54(5):391)

- [14] Vasut F, Bidica N, Stefanescu I, et al. Study about sorption in sponge and powder titanium of hydrogen isotopes obtained from a cryogenic distillation process. *Renewable Energy*, 2008, 33:216
- [15] Xia S W. Activation Energies and Calculation. Beijing: Higher Education Press, 1993:30
 (夏少武.活化能及其计算.北京:高等教育出版社, 1993:30)
- [16] Wasilewski R J. Kehl G L. Diffusion of hydrogen in titanium. Metallurgia, 1954, 50:225