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ABSTRACT Taking a composite system of casing—cement sheath—formation in a high temperature and high pressure oil well as the
research object a thermo-structural coupling model is constructed and its theoretical solution is obtained by considering contact conti—
nuity and boundary conditions. The theoretical solution is very accurate in comparison with FEM solution. Comparing the theoretical
solutions with thermo-structural coupling effects and without thermal load it is indicated that thermal load has much greater influence
on the equivalent stress. Failure coefficient which is used to analyze structure integrity is defined by Mises Drucker—Prager and
Mohr—Coulomb yield criteria. The factors of elastic modulus Poisson’ s ratio nonuniform in-situ stress coefficient formation tempera—
ture and casing pressure are discussed by considering the failure coefficient distribution of casing—cement sheath—formation. The
results show that the above factors have great effect on the failure coefficient distribution. The failure coefficient of the 1st cementation
plane is greater than that of other planes and its influence on wellbore integrity is large.
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Fig.1 Thermo-structural coupling analysis model of composite sys—

tem
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Table 1 Parameters for calculation
/mm /GPa /1073C ™" Ay/ We(meK) - e/10 73 /MPa /(°) /MPa
73.05 210.0 0.25 1.17 36.70 -11. 14 — — 670
73.20 15.0 0.28 1.03 19.12 — 22 30 —
89.35 11.0 0.30 1.03 1.74 0.51 3 22 —
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Fig.2 Curves of radial stress and tangential stress on the outside layers of the casing and cement sheath: ( a) radial stress curves along the radial di—

rection; ( b) shear stress curves along the radial direction; (¢) radial stress curves along the hoop direction; ( d) shear stress curves along the hoop
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