

钢中非金属夹杂物形态对其去除行为的影响

王 敏^{1,2)✉}, 郝 阳^{1,2)}, 马铖佑^{1,2)}, 王林静^{1,2)}

1) 北京科技大学钢铁冶金新技术国家重点实验室, 北京 100083 2) 北京科技大学冶金与生态工程学院, 北京 100083

✉ 通信作者, E-mail: worldmind@163.com

摘要 采用物理模拟手段研究球形、立方体、圆柱体、树枝状、团簇状等钢中常见形状夹杂物形状修正系数的差异性, 并分析粒子表面形貌和运动取向对形状修正系数的影响。粒子的形状修正系数与阻力系数满足线性正相关, 可以用形状修正系数评价粒子的上浮去除能力; 在体积相同情况下, 同类型夹杂物粒子的去除能力依次为树枝状(垂直) < 粗糙球形 < 立方体 < 圆柱(半径 6 mm) < 圆柱(半径 4 mm) < 树枝状(水平) < 团簇状(水平) < 光滑球形; 粗糙表面的球形其表面积约为光滑球形的 2 倍, 其形状修正系数同时增加 2.1 倍。简单粒子的形状修正系数受运动取向影响较小, 复杂粒子则受运动取向影响较大, 树枝状颗粒垂直上浮时的形状修正系数约为水平上浮时的 2 倍。

关键词 炼钢; 非金属夹杂物; 形态; 夹杂物去除; 模拟实验

分类号 TF703.5⁺4

Effect of the morphologies of non-metallic inclusions on their removal behavior

WANG Min^{1,2)✉}, HAO Yang^{1,2)}, MA Cheng-you^{1,2)}, WANG Lin-jing^{1,2)}

1) State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China

2) School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China

✉ Corresponding author, E-mail: worldmind@163.com

ABSTRACT The differences in shape correction coefficient (SCC) of common inclusions in molten steel including spherical, cubic, cylindrical, dendritic and cluster particles were studied by a physical simulation method. The effects of inclusion surface morphologies and movement orientation on the SCC were analyzed on the basis of simulation results. The SCC can be used to evaluate the inclusion removal ability because of a linear correlation relationship between the SCC and the resistance coefficient of inclusions. For inclusions with the same volume but different shapes, the removal ability increase in order as follows: dendritic particles with vertical floatation, spherical particles with coarse surfaces, cubic particles, cylindrical particles of 6 mm in radium, cylindrical particles of 4 mm in radium, dendritic particles with horizontal floatation, clusters, and spherical particles with smooth surfaces. When the surface area of spherical particles with coarse surfaces is approximately 2 times as large as that of spherical particles with smooth surfaces, the SCC of spherical particles with coarse surfaces increases by 2.1 times compared with the smooth ones. For simple particles, movement orientation has just limited effect on the SCC, but it influences the SCC of complex particles greatly. The SCC of dendritic particles with vertical floatation is about twice of that with horizontal floatation.

KEY WORDS steelmaking; non-metallic inclusions; morphology; inclusion removal; simulation experiment

钢中非金属夹杂物的形态特征会影响钢液的洁净度^[1], 洁净钢要求钢中非金属夹杂物的形状、类型、尺

寸和分布达到不影响钢材使用性能的水平。高品质钢对夹杂物的控制要求则更高, 如高品质轴承钢中全氧

收稿日期: 2015-07-10

基金项目: 国家自然科学基金资助项目(51404018); 中央高校基本科研业务费资助项目(FRF-TP-14-125A2); 钢铁冶金新技术国家重点实验室基金资助项目(KF13-09)

质量分数可达到 4×10^{-6} 以下, 超低氧情况下夹杂物数量已经控制到极低水平, 同时要求钢中单颗粒的 D 类球状不变形氧化物和 Ds 类单颗粒球状夹杂物尽可能少, 无 TiN 夹杂等才能满足其高疲劳性能^[2]。不同钢种对非金属夹杂物的控制要求存在差异性, 不同钢液脱氧条件下夹杂物形貌差异性也非常大。要最大化地去除钢中高危害夹杂物, 首先需要明确不同非金属夹杂物的形态特征与其上浮去除行为的关系^[3]。

本文采用石蜡粒子模拟钢液中不同形态特征的夹杂物, 通过物理模拟的手段研究粒子形状、表面形貌和运动取向对粒子形状修正系数的影响, 从而判断不同形态特征粒子的上浮去除能力, 为钢中非金属夹杂物的去除提供指导。

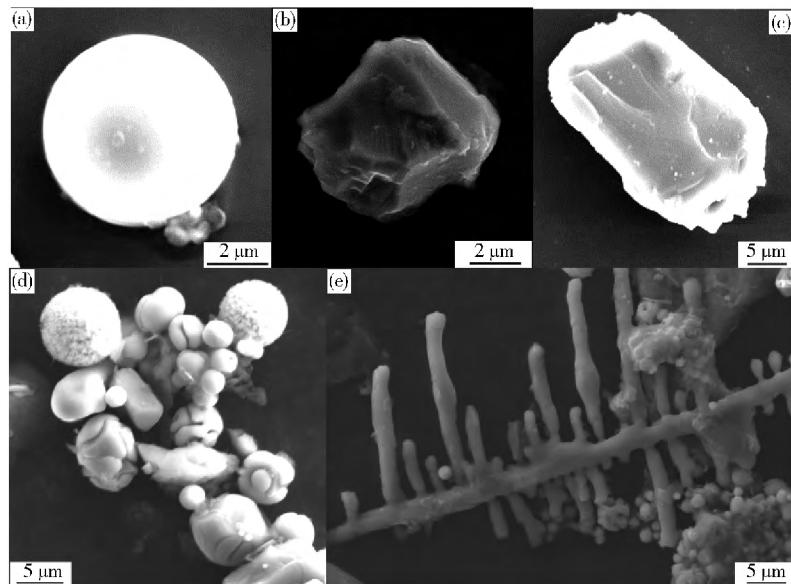


图 1 钢中不同特征的非金属夹杂物

Fig. 1 Non-metallic inclusions with different characteristics in molten steel

粒子在流体中运动受到的阻力 F_d 可以表示为

$$F_d = \frac{1}{2} C_D \rho_p U_p^2 A_s. \quad (1)$$

式中: C_D 为阻力系数; U_p 为粒子相对流体的运动速度, $\text{m} \cdot \text{s}^{-1}$; A_s 为粒子的迎风面积, m^2 ; ρ_p 为粒子的密度, $\text{kg} \cdot \text{m}^{-3}$ 。

$$C_D = \frac{24}{Re_p} C_{Re} C_s. \quad (2)$$

式中 C_s 为粒子的形状修正系数, Re_p 为颗粒雷诺数, C_{Re} 为雷诺数修正系数。

$$Re_p = \frac{\rho_f D U_p}{\mu_f}. \quad (3)$$

$$C_{Re} = 1 + 0.15 Re_p^{0.678} + 0.0175 (1 + 4.25 \times 10^4 Re_p^{-1.16})^{-1}. \quad [6] \quad (4)$$

式中: ρ_f 为流体的密度, $\text{kg} \cdot \text{m}^{-3}$; D 为粒子的当量直径,

1 实验方法及原理

根据脱氧条件的不同钢液中非金属夹杂物形状差异性非常大^[4]。简单粒子既有球形也有非球形, 如图 1 (a) ~ (c) 是原貌分析得到的不同脱氧条件下的典型夹杂物粒子^[5]; 同时脱氧夹杂物的聚合、长大过程会形成很多复杂粒子, 如图 1 (d) 和图 (e)。不同类型夹杂物上浮去除能力的差异性需要通过判断不同形貌粒子在溶液中的阻力系数进行比较。传统的关于颗粒阻力和阻力系数的理论是基于理想的球形颗粒建立的, 对于非球形颗粒需要修正。形状修正系数 C_s , 是指非球形粒子的实际阻力对等体积的理想球形粒子阻力系数的修正系数; 通过研究不同粒子形状修正系数可以间接判断各种类型粒子的上浮去除能力。

m ; μ_f 为流体的运动黏度, $\text{m}^2 \cdot \text{s}^{-1}$ $\mu_{\text{水}} = 1.006 \text{ m}^2 \cdot \text{s}^{-1}$ 。

由式(3) 和式(4) 可知, C_{Re} 为粒子相对运动速度 U_p 的函数。

将 C_D 和 Re_p 代入式(1), 可得到粒子运动阻力的表达式:

$$F_d = \frac{12\mu_f C_{Re} C_s U_p A_s}{D}. \quad (5)$$

粒子上浮的过程中, 初期有一个加速过程, 当粒子的净浮力与上浮过程中液体的阻力相等时, 达到匀速。

$$(\rho_f - \rho_p) V g = \frac{12\mu_f C_{Re_1} (U_1) U_1 A_{s_1}}{D}. \quad (6)$$

$$(\rho_f - \rho_p) V g = \frac{12\mu_f C_{Re_2} (U_2) U_2 A_{s_2}}{D}. \quad (7)$$

式中: V 为粒子体积, m^3 ; g 为重力加速度, $\text{m} \cdot \text{s}^{-2}$; 用 U_1 表示球形粒子上浮达到匀速后的速度, C_{Re} 是 U_1 的函

数; U_2 表示非球形颗粒上浮达到匀速后的速度, C_{Re} 是 U_2 的函数.

式(6)和式(7)中左边为净浮力, 右边为液体所受到的阻力.

显然 $U_2 \neq U_1$, 实验过程中保证不同粒子的密度和体积相等, 则形状修正系数可以用下式计算得到:

$$C_s = \frac{C_{Re_1} (U_1) U_1 A_{s_1}}{C_{Re_2} (U_2) U_2 A_{s_2}} \quad (8)$$

针对夹杂物的上浮去除方面许多学者进行了研究^[7-9], 采用的模拟夹杂物的粒子多为液态硅油或者塑料发泡粒子, 其形状主要以球形或者近球形为主, 忽略了夹杂物形状对上浮去除的影响. 真实冶炼过程中固相夹杂物大都形状不规则, 形状对其上浮去除的影响不能忽略. 本研究选择固体石蜡/去离子水的实验体系来模拟夹杂物/钢液体系, 固态石蜡与水不润湿(润湿角 105°), Al_2O_3 与钢液不润湿(润湿角为 140°), 粒子在溶液体系中界面行为相似, 且石蜡通过液态浇注更容易精确控制其形状, 便于根据夹杂物形状对其进行形状设计, 对于观察粒子形状对其上浮去除的影响非常有帮助. 模拟体系中, 固体石蜡的密度 $\rho_{\text{石蜡}} = (0.81 \sim 0.90) \times 10^3 \text{ kg} \cdot \text{m}^{-3}$ ^[10], 去离子水的密度 $\rho_{\text{水}} = 1.0 \times 10^3 \text{ kg} \cdot \text{m}^{-3}$, 粒子与溶液的密度比值范围 0.81 ~ 0.90; 钢液体系中, 钢液的密度范围 $\rho_{\text{钢液}} = (6.8 \sim 7.1) \times 10^3 \text{ kg} \cdot \text{m}^{-3}$ ^[11], 纯 Al_2O_3 氧化物的密度为 $3.8 \times 10^3 \text{ kg} \cdot \text{m}^{-3}$, 但实验脱氧后得到的夹杂物主要成分为 Al_2O_3 、一部分钛氧化物($\rho_{\text{Ti}_2\text{O}_3} = 4.6 \times 10^3 \text{ kg} \cdot \text{m}^{-3}$)和少量金属

铁, 且形貌越复杂内部带入的金属铁含量越高, 复合脱氧产物的实际密度要大于纯 Al_2O_3 的密度, 其表观密度为 $(4.0 \sim 4.5) \times 10^3 \text{ kg} \cdot \text{m}^{-3}$, 因此夹杂物粒子与钢液的密度比值范围为 0.56 ~ 0.66. 实验中石蜡粒子与去离子水溶液的密度比略高于夹杂物与钢液的密度比, 但密度比的差异只影响粒子上浮达到最大速度的时间, 不影响区分粒子去除的难易程度和形状系数的差异性.

粒子上浮模拟的实验装置如图 2. 实验开始前, 首先称量相同质量的石蜡用于浇注不同形状的粒子(部分浇注成型的粒子形状如图 3), 调整摄像机与容器之间的距离并固定高速摄像机位置, 使其监控范围可以完全覆盖粒子匀速运动段; 粒子槽内部存在三个彼此分隔的用于放置模拟粒子的矩形区间, 实验前将待测粒子和对比粒子分别放置在粒子槽内的不同区间, 粒子槽上方用一个 T 型的有机玻璃板与螺栓卡片相连, 起到隔离粒子与溶液的作用, 放置好粒子后将抽屉推入模拟容器内并固定和密封后, 将去离子水注入到容器中, 待到液位稳定后, 打开摄像机, 并同时松开螺栓卡片, 将 T 型有机玻璃板缓缓拉出, 则槽内的粒子在浮力作用下开始加速运动, 直到达到匀速, 最后抵达搁板处; 摄像机通过容器上的标尺记录粒子的运动轨迹, 根据粒子移动的距离和时间计算粒子达到匀速后的速度. 采用垂直投影法计算不同形状粒子的迎风面积, 通过式(8)计算各种粒子的形状修正系数.

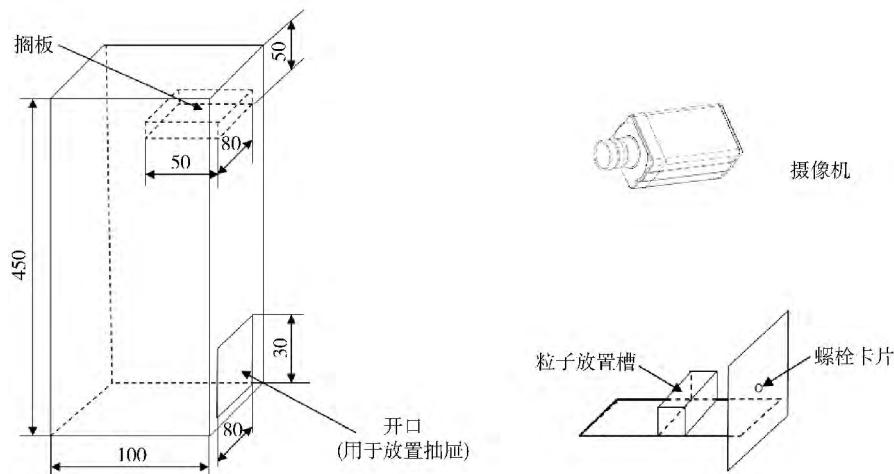


图 2 实验装置示意图(单位: mm)

Fig. 2 Schematic diagram of experimental equipment (unit: mm)

每种粒子的设计质量均为 0.5 g(即体积相等), 保证粒子在溶液中受到的重力和浮力相等, 通过对复杂粒子与标准球形粒子的上浮差异性, 可以判断不同形状粒子上浮过程中受到阻力的差异性, 进而判断不同粒子的形状修正系数. 实验设计 5 种简单粒子

(半径 5.1 mm 的光滑球, 半径 5.1 mm 的粗糙表面球形, 边长 8.3 mm 的立方体, 半径 4.0 mm × 高 11.1 mm 的圆柱, 半径 6 mm × 高 4.9 mm 的圆柱) 和两种复杂粒子(树枝状, 团簇状), 每组形状粒子的实验方案测定 4 次. 其中, 粗糙小球在加工过程中采用不同粗糙度的

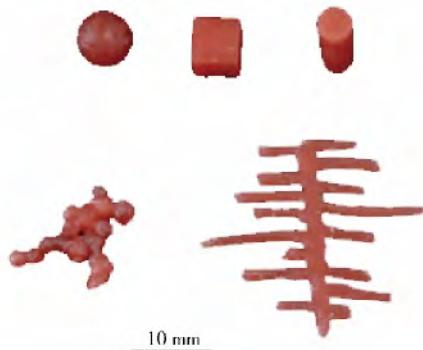


图 3 模拟粒子的典型特征

Fig. 3 Typical characteristic of simulation particles

砂纸打磨粒子表面,使得具备一定密度的细小凹坑,其表面积约是光滑小球的2倍,用来对比表面粗糙度对于上浮去除的影响。复杂粒子分别对比了同一粒子垂直上浮和水平上浮时形状修正系数的差异性。

2 结果分析与讨论

粒子形状修正系数的测定原理可由式(8)表示,即同一时刻让体积相等的标准球形粒子和其他形状粒子同时上浮跟踪其速度变化,直至达到匀速。计算不同粒子相对于球形粒子的形状修正系数,首先需要得到其他粒子与标准球形粒子达到匀速后的速度比、雷诺数修正系数比和迎风面积比;速度比经过实验测定即可得到。根据各自速度带入式(3)和式(4)也可以得到雷诺数修正系数之比,不同粒子的迎风面积则根据其运动取向通过计算得到。获得形状修正系数 C_s 可以进一步根据式(2)计算粒子在流体中的阻力系数 C_D ,阻力系数则可以直接评价粒子在流体中上浮的难易程度。

2.1 粒子形状修正系数对上浮去除的影响

在液体介质中,运动颗粒主要受到阻力和场力(重力和浮力)作用,后者对于同质量的颗粒为定值;阻力则与颗粒的形状有关,表示为流体正应力(压力)与剪力沿颗粒外表面封闭的积分。颗粒的阻力系数与其上浮去除的难易程度直接相关,且阻力系数一般不依赖于颗粒尺寸变化。因此,可以通过物理模拟放大实验研究不同形状颗粒的阻力系数。

图4为实验过程得到的粒子形状系数与阻力系数之间的关系。结果表明:粒子形状系数与阻力系数近似线性正相关;当形状系数增加时,阻力系数线性增大。因此,通过测定粒子形状修正系数可以判断粒子的上浮去除能力。

图5为不同粒子平均修正系数对比。对于简单粒子而言,相同质量不同形状粒子的去除能力依次为粗糙球形<立方体<圆柱(半径6 mm)<圆柱(半径4 mm)<光滑球形;复杂粒子的形状修正系数一般较简

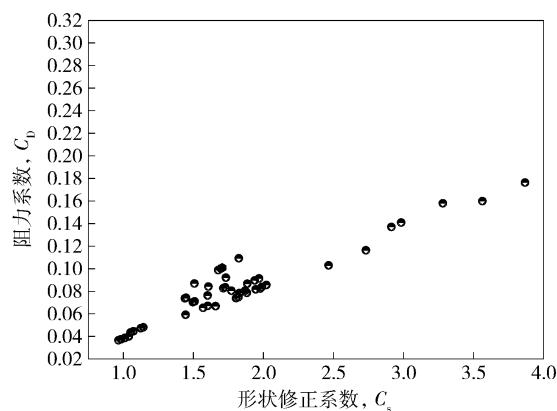


图 4 形状修正系数与阻力系数之间的关系

Fig. 4 Relationship between shape correction coefficient and resistance coefficient

单粒子大,其上浮的难易程度与其上浮取向也有关系,不同取向上浮时表面阻力方向不同导致其上浮速度产生差异。这一点后面的讨论也可以看到。同样形状条件下,粗糙表面粒子的形状修正系数要远高于光滑表面粒子的形状修正系数。

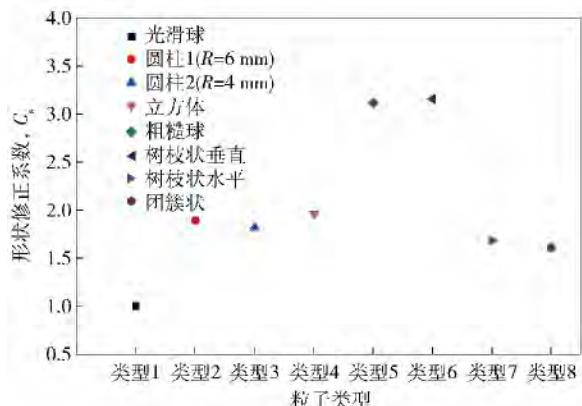


图 5 不同粒子形状修正系数比较

Fig. 5 Comparison of shape correction coefficient between different particles

2.2 粒子表面特性对形状修正系数的影响

图6为同体积不同粗糙度粒子同时上浮的轨迹对比。可以看出,粗糙表面的粒子上浮过程受到的阻力增加显著导致其上浮速度降低。光滑表面小球的形状系数为1,而粗糙表面小球平均形状修正系数为光滑小球的3.1倍(如图7)。粒子上浮既受到形状的影响同时也受到粒子表面特征的影响,由于阻力的来源主要为粒子的表面力,因此粒子表面形貌的复杂程度对其上浮去除影响更加显著。

由图8可以看出,简单粒子的形状系数与粒子的表面积相关,同类粒子当表面粗糙度变化后其表面积的增大是导致其形状系数增大的主要因素。简单粒子在运动过程中只朝一个方向运动,其表面积直接影响其形状修正系数;复杂粒子运动过程中会发生翻转和

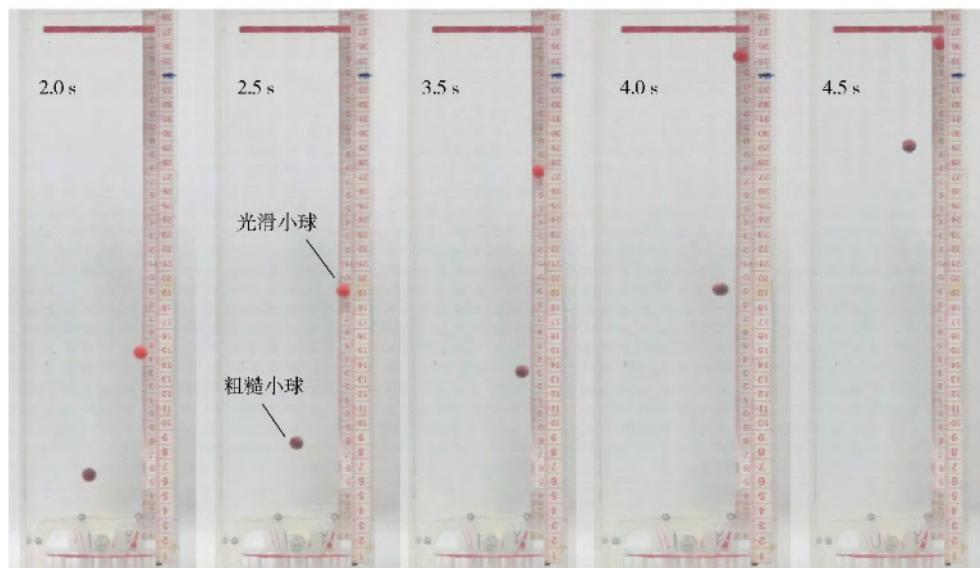


图 6 不同粗糙度球形粒子上浮轨迹

Fig. 6 Floatation tracks of spherical particles with different roughness

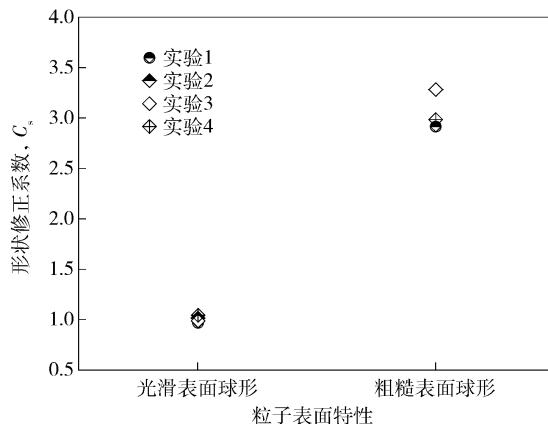


图 7 粒子表面粗糙度与形状修正系数的关系

Fig. 7 Relationship between surface roughness and shape correction coefficient

运动取向的变化,同一复杂粒子在运动的不同阶段其取向也会有差异,同样会导致形状修正系数的变化,并不完全与粒子表面积大小相关。

2.3 粒子运动方式对形状修正系数的影响

图9为二维树枝状粒子在不同运动方式下的形状修正系数。可以看出:粒子水平上浮时,其形状修正系数均值为1.68,多次实验结果波动较小;当垂直上浮时,形状修正系数均值则为3.15,且多次实验结果波动大(最小为2.5,最大达到3.9)。实验的波动性在于树枝状粒子垂直上浮时,其阻力的变化导致粒子上浮过程中沿水平方向出现摆动(如图10),运动方向并非完全垂直,在横向也存在移动。这也证明对于流体中运动的复杂粒子,其运动取向的变化会导致粒子表面阻力的变化,进而影响粒子在该方向上的形状修正系数。

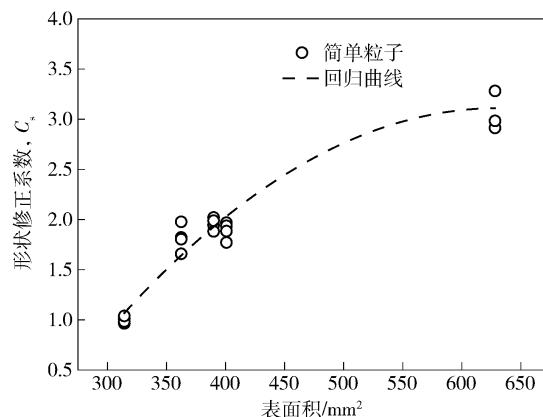


图 8 粒子表面积与形状系数的关系

Fig. 8 Relationship between particle surface area and shape correction coefficient

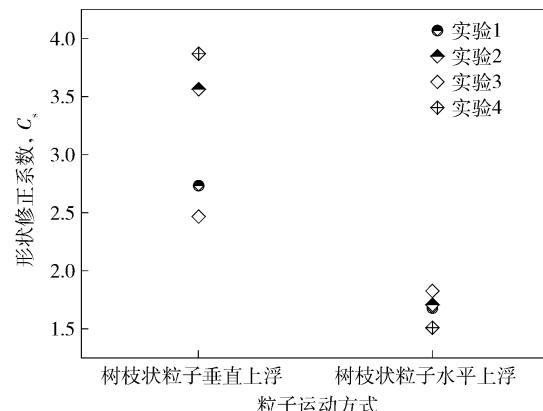


图 9 粒子运动方式对形状修正系数的影响

Fig. 9 Effect of particle motion modes on shape correction coefficient

2.4 夹杂物的形态控制对去除的影响

钢液中夹杂物粒子上浮的难易程度与如下因素有

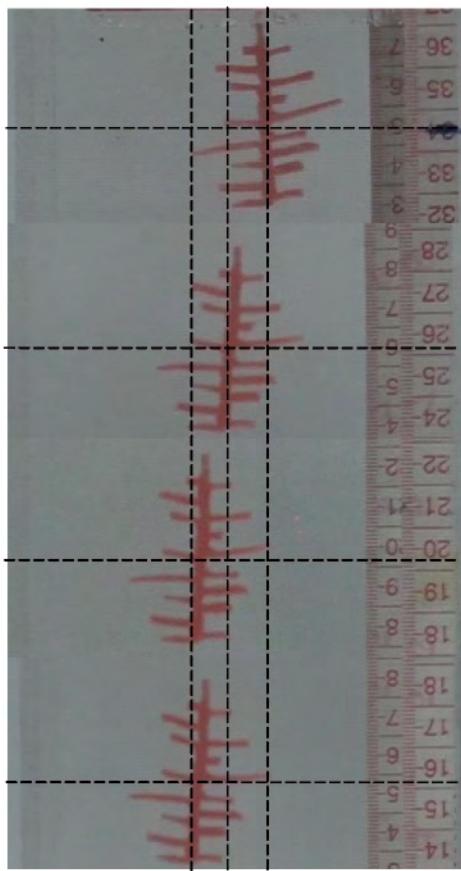


图 10 垂直运动时粒子的上浮轨迹

Fig. 10 Track of a dendritic particle during vertical floatation

关: 夹杂物的类型(密度, 液相/固相)、体积(尺寸)、形状及运动取向和表面形貌。同类型粒子在体积相同的情况下, 其形状系数越小越容易上浮, 粒子的形状、运动取向及表面形貌则与粒子形状系数直接相关, 粗糙的表面会增大粒子形状修正系数; 同类型粒子在形状系数相同的情况下, 其体积越大越容易上浮; 同一形状及表面特征粒子在体积相同情况下, 粒子与流体的密度差越大越容易上浮, 且固相夹杂与钢液不润湿比液相夹杂更容易上浮。根据脱氧条件的不同, 脱氧产物的表面形貌会有出差异性, 同样球形或近球形颗粒由于其表面特性的差异会影响到其上浮去除效果。

不同形态粒子形状系数的结果表明, 同体积同类型不同形状的夹杂物粒子去除能力依次为树枝状(垂直) < 粗糙球形 < 立方体 < 圆柱(半径 6 mm) < 圆柱(半径 4 mm) < 树枝状(水平) < 团簇状(水平) < 光滑球形。因此, 从有利于夹杂物去除角度考虑, 钢中大尺寸固相和表面光滑的团簇或球形颗粒更容易上浮去除, 棒状和树枝状则存在运动取向的问题, 上浮效果受到一定影响。为了脱氧产物的最大化去除, 脱氧过程的控制应综合考虑脱氧产物的类型、大小、形状和表面形貌的影响, 才能确保工艺一定的条件下夹杂物去除效果的最大化。

3 结论

(1) 颗粒的阻力系数与上浮去除的难易程度直接相关, 而形状修正系数与阻力系数满足线性正相关, 通过测定粒子形状修正系数可以判断钢中不同形状夹杂物的上浮去除能力。

(2) 粒子表面形貌会增加粒子的形状修正系数, 光滑表面球形的形状系数为 1, 球形表面粗糙度增加 1 倍后, 粗糙表面球形颗粒的形状修正系数为光滑表面球形的 3.1 倍。简单粒子的运动取向对粒子形状修正系数影响较小, 形貌取向差异大的复杂粒子的形状修正系数与运动取向相关。树枝状颗粒水平上浮时其形状修正系数均值为 1.68, 垂直上浮时则增加到 3.15。

(3) 同体积大小的相同类型夹杂物粒子上浮的难易程度依次为树枝状(垂直) > 粗糙球形 > 立方体 > 圆柱 1(半径 6 mm) > 圆柱 2(半径 4 mm) > 树枝状(水平) > 团簇状(水平) > 光滑球形。

(4) 钢液中夹杂物粒子上浮的难易程度与夹杂物的类型(密度, 液相/固相)、体积(尺寸)、形状及运动取向和表面形貌相关。大尺寸的固相和光滑表面的团簇或球形夹杂物更容易上浮去除, 棒状和树枝状则存在运动取向的问题, 上浮效果受到一定影响。

参 考 文 献

- [1] Wang M, Bao Y P, Yang Q. Effect of ferro-titanium alloying process on steel cleanliness. *J Univ Sci Technol Beijing*, 2013, 35(6): 769
(王敏, 包燕平, 杨荃. 钛合金化过程对钢液洁净度的影响. 北京科技大学学报, 2013, 35(6): 769)
- [2] Matsunaga H, Komata H, Yamabe J, et al. Effect of size and depth of small defect on the rolling contact fatigue strength of bearing steel JIS-SUJ2. *Procedia Mater Sci*, 2014, 3: 1663
- [3] Guo L F, Li H, Wang Y. Quantitative description of morphology characteristics of inclusions in steel and its relationships with floating velocity. *Metall Anal*, 2012, 32(9): 1
(郭络方, 李宏, 王耀. 钢中夹杂物形貌特征的定量描述方法及其上浮速度的关系. 冶金分析, 2012, 32(9): 1)
- [4] Yang J, Yamasaki T, Kuwabara M. Behavior of inclusions in de-oxidation process of molten steel with *in situ* produced Mg vapor. *ISIJ Int*, 2007, 47(5): 699
- [5] Bao Y P, Wang M, Jiang W. A method for observing the three-dimensional morphologies of inclusions in steel. *Int J Miner Metall Mater*, 2012, 19(2): 111
- [6] Crowe C, Sommerfad M, Tsuji Y. *Multiphase Flows with Drops and Particles*. New York: CRC Press, 2000
- [7] Yue Q, Chen Z, Zou Z S. Analysis on mechanism of agglomeration of non-metallic inclusions in liquid steel. *Iron Steel*, 2008, 43(11): 37
(岳强, 陈舟, 邹宗树. 钢液中非金属夹杂物团聚的机理分析. 钢铁, 2008, 43(11): 37)

[8] Li D H , Li B K , He J C. The removal of inclusion in tundish by gas blowing. *Acta Metall Sin* , 2000 , 36(4) : 411
(李东辉 , 李宝宽 , 赫冀成 . 中间包底吹气过程去除夹杂物效果的模拟研究 . 金属学报 , 2000 , 36(4) : 411)

[9] Yang H L , He P , Zhai Y C. Water modeling experiment of removing inclusions from molten steel by bubble adhering. *Iron Steel Vanadium Titanium* , 2013 , 34(6) : 45

[10] Ukrainczyk N , Kurajica S , Šipušić J. Thermophysical comparison of five commercial paraffin waxes. *Chem Biochem Eng Q* , 2010 , 24(2) : 129

[11] Jimao I , Cramb A W. The density of liquid iron-carbon alloys. *Metall Trans B* , 1993 , 24(1) : 5