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Instability analysis and experimental study of a hydraulic relief valve

MA Wei MA Fei™ ZHOU Zhi-hong GENG Xiao-guang
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ABSTRACT The structure characteristic of a pressure relief valve embedded within a hydraulic circuit was analyzed. A nondimen—
sional mathematical model was constructed by considering fluid compressibility tube elasticity and energy loss when the valve poppet
impacts its seat. Lyapunov exponent analyses were carried out. The aim is to capture the instability mechanism and chatter behavior of
the relief valve. The non-smooth dynamical system theory and software MATLAB were used to draw one-parameter and two-parameter
bifurcation diagrams. Grazing bifurcation which occurs at the poppet departure from the seat was explained. The results show that the
flow rate into the valve and the setting pressure directly determine oscillation characters and Hopf bifurcation grazing bifurcation pe—
riodic and chaotic phenomena appear. The measured bifurcation diagram at the spring pre-compression value x, =5 mm was presented.

The mathematical model of the relief valve was verified on a test platform.
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Fig.1 Schematic diagram of a hydraulic system
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Fig.2 Geometry of the valve for calculating the relationship between

the orifice area A( x) and displacement x
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Table 1 Physical parameters of the relief valve

26.7 x10° Nem ™!

m 0.0617 kg
£ 100 Nesem ™!
Po 1 x10° Pa
A 1.39x10 ~* m?
E 0.435 x10° Pa
14 7x107° m?
Cy 0. 86
p 870 kgem 3
€ 0.0112m
v 2x10 7 m?es ™!
D 0.0133 m
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Fig.5 Bifurcation diagram for k =2.46 8=7.53 and 5=22.67: (a) complete diagram (b ) details with enlarged scale
qg O 11.94 < ¢ <12.55 2
q 4.81 <q<4.92 6(1)
2 . 6( a) q=12.55
4.92 <g<4.98 4
6(b) y, =0
q 7.29 < ¢ <
7.33 4 6(c)
6( g)
7.33<g<8.65 2 q =20 Hopf
6(d)
8.65<g<11.94 q Lyapunov
6(e) A 0 4(b)



- 140 - 38 1

6 (a2 (g=4.85);(b) 4 (g=4.94);(c) 4 (g=7.3);
(d) 2 (g=8);(e) 1 (g=10); () 2 (¢=12);(g) 1 (g=14)
Fig.6 Phase space trajectories along bifurcation diagram. Red lines represent that the poppet impacts the seat: ( a) period-wo impacting ( ¢ =
4.85); (b) perioddour impacting ( ¢ =4.94) ; (c) periodfour impacting (¢ =7.3); (d) period-+wo impacting (g =8) ; (e) period-ene impacting
(g=10); (f) period-iwo impacting (¢ =12); (g) period-ene non-impacting ( ¢ = 14)
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Fig.7 Qualitative bifurcation diagram. Bifurcations are labeled HB

for Hopf bifurcation GR for grazing bifurcation and PD for period—

doubling bifurcation
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Fig.8 Two-parameter bifurcation diagram ( at § =22. 67 the one—

parameter cut is shown in Fig. 5( a) )
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Fig. 10 Measured bifurcation diagram of the system while slowly var—

ying the flow rate
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