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液压溢流阀的失稳分析和实验研究
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摘 要 分析了液压回路中溢流阀的结构特点，考虑液压油压缩性、管道弹性和阀芯碰撞阀座时的能量损失，建立了溢流阀
量纲一形式的数学模型，并进行了 Lyapunov指数分析，目的是研究溢流阀的失稳机理和颤振行为． 应用非光滑动态系统理论
和 MATLAB软件绘制单参数和双参数分岔图，理论解释了阀芯离开阀座时的擦边分岔． 结果表明，溢流阀入口流量和预设压
力直接决定着阀的振荡特性，并且存在着 Hopf分岔、擦边分岔、周期和混沌等现象． 搭建了测试平台，得到弹簧预压缩量 x0 =
5 mm情况下的阀芯位移分岔图，对数学模型进行了验证．
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ABSTＲACT The structure characteristic of a pressure relief valve embedded within a hydraulic circuit was analyzed． A nondimen-
sional mathematical model was constructed by considering fluid compressibility，tube elasticity and energy loss when the valve poppet
impacts its seat． Lyapunov exponent analyses were carried out． The aim is to capture the instability mechanism and chatter behavior of
the relief valve． The non-smooth dynamical system theory and software MATLAB were used to draw one-parameter and two-parameter
bifurcation diagrams． Grazing bifurcation which occurs at the poppet departure from the seat was explained． The results show that the
flow rate into the valve and the setting pressure directly determine oscillation characters，and Hopf bifurcation，grazing bifurcation，pe-
riodic and chaotic phenomena appear． The measured bifurcation diagram at the spring pre-compression value x0 = 5mm was presented．
The mathematical model of the relief valve was verified on a test platform．
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直动式溢流阀在工业上有广泛的应用，用来防止

系统压力过载，然而溢流阀有不稳定和发生自激振荡

的现象( 见 Misra 等［1］和 Chabane 等［2］研究成果) ． 这
种阀的非稳定性现象被称为“颤振”．
在溢流阀颤振相关的实验研究工作中，Misra等［1］

为了验证模型的正确性，考察了油管对溢流阀自激振

荡的影响，并首次考虑了油液的压缩性． 杨忠炯等［3］

建立了溢流阀在强振动环境下的动力学仿真模型，发

现当系统稳定时，系统会衰减振动至稳定，但当干扰幅

值超过临界值时，系统会进入极限环的吸引域，产生周

期性振动，通过增加阀口直径、弹簧刚度和减小阀芯半
锥角，可增强溢流阀的抗干扰能力． Moussou 等［4］专注
于研究阀本身( 不考虑管道影响) ，发现增大供油压力

会加剧阀的不稳定性，尤其在阀芯只有很小位移的时

候． 他的观点是，系统的不稳定本质上有两种原因:一
种是阀和油箱组成“阀模型”，作为独立系统可能导致
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不稳定;另一种是“管道模型”，阀和管道会相互作用．
对于典型的短管( 管长与内径的比值≤20) 来说，振荡
频率为管道的 1 /4 波共振频率． Chabane 等［2］研究了
背压对阀颤振的影响，发现背压显著影响阀的稳定性．
从理论建模和分析的观点出发，有大量的研究成

果． 张怀亮［5］等建立了溢流阀的 Simulink 仿真模型，
分析了基础振动及结构参数对溢流阀动态特性的影响

规律，发现调定压力波动幅值随基础振动的振幅增大

而线性增大． 刘银水［6］等针对海水液压介质的特点，
设计了一种直动式水压溢流阀，在仿真分析的基础上，

得到阀的主要结构参数即介质、运动质量、阻尼以及管
路容积对阀动态响应特性的影响． 吴珊等［7］采用现代
控制方法获得溢流阀的状态方程，并结合工程控制理

论获得传递函数模型，采用 Ｒouth 稳定性判据对阀的
稳定性做出判定并做了相对稳定性分析，通过仿真分

析获得该阀的动态特性曲线以及上升时间等动态特性

参数，同时对阀在脉动流量输入条件下的动态性能进

行了仿真． Dasgupta和 Karmakar［8］研究了系统参数对
瞬态响应的敏感性，发现弹簧预压缩量和阻尼几何结

构影响最大． 张天霄等［9］应用振动理论对液压冲击情
况下的液压溢流阀进行了振动分析，建立了溢流阀的

振动模型，研究了溢流阀的固有频率和瞬态响应问题，

并进行了仿真验证．
得益于计算流体力学 ( CFD) 方法的发展，一些研

究成果采用了先进的计算流体力学解算器． 陈青
等［10］应用软件 Fluent，对三级同心溢流阀模型的多种
工况进行了仿真计算和可视化研究，给出锥阀阀腔内

的速度场和压力场分布图． Srikanth和 Bhasker［11］对回
路紧急切断阀进行了移动网格化的二维流量分析，

Song等［12］对模型加入流固耦合( FSI) 仿真． Viel［13］提
出液压元件瞬态模拟的软件 AMESim 和 CFD 联合仿
真的方法，但没有实验和分析验证． Yonezawa 等［14］用
流固耦合方法分析了控制阀的自激振荡． CFD提供了
确定不易测量的参数值的方法，例如阻尼系数和流体

诱发振动时的附加质量，见文献［15］．
本文利用非光滑动态系统理论［16］，分析溢流阀的

颤振失稳现象． 并通过动态测试，验证固定预紧力下
的流量影响．

1 数学模型

图 1 描述了系统结构［17］． 液压油由动力部分提
供，包括齿轮泵和附加安全阀用于保护系统，动力部分

提供给系统流量 Qpump ． 然而，由于液压油的压缩性和
管道的弹性，进入溢流阀的流量和从泵流出的并不同．
为了模拟压缩效应，增加了一个假设的腔室，其体积等

于系统中的油液体积． 这个腔室代表着系统的刚度．
腔室的质量守恒公式如下:

图 1 液压系统结构图
Fig． 1 Schematic diagram of a hydraulic system

d
dt ( ρV) = ρ［Qpump － Q( x，p) ］． ( 1)

式中，V为系统油液总体积，ρ为液压油密度，p 为进入
溢流阀的压力，Qpump为泵出口流量，Q ( x，p) 为通过溢
流阀的流量． Q( x，p) 为阀芯位移 x和压力 p的函数:

Q( x，p) = A( x) Cd
2
ρ槡p． ( 2)

假设阀芯部分开启，阀芯和阀座之间的通流面积由图

2 中的垂直距离 h简化得到
A( x) = hπd = hπ( D － hcosα) ．

其中通流直径 d和阀座孔径 D 由图 2 定义，α 为半锥
角，通过 h = xsinα替代，最终得到

A( x) = xsinαπ( D － xsinαcosα) =

xsinαπ (D 1 － x
D sinαcos )α ． ( 3)

根据图 2 中的阀结构，并假设油液是正压的，也就
是它的密度只取决于压力，式( 1) 的左侧可写成:

d
dt ( ρV) = V dρ

dt + ρ
dV
dt = V dρ

dp
dp
dt = V ρ

E
dp
dt ．

阀芯的动力学用牛顿第二定律描述，结合碰撞恢

复系数 r用来描述碰撞之后的能量损失，最后系统行
为用常微分方程表示如下:

x· = v，

v· = pA
m － ξ

m v － s
m ( x + x0 ) ，

p· = E [V Qpump － A( x) Cd
2
ρ槡 ]p ． ( 4)

v + = Ｒ( v － ) = － rv －，p + = p － ． ( 5)
式中: x和 v分别为阀芯的位移和速度; ξ为阻尼系数;
s为弹簧刚度; m为移动部分质量; x0为弹簧预压缩量;
A为系统压力作用于阀芯底部的面积; p为进入溢流阀
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图 2 阀结构中通流面积 A( x) 和位移 x之间的关系
Fig． 2 Geometry of the valve for calculating the relationship between
the orifice area A( x) and displacement x

的压力; E为考虑油液压缩性和油管弹性之后的系统
折算弹性模量; Qpump为泵出口压力; V为系统全部油液
体积; Cd为阀入口处的流量系数，虽然它取决于雷诺

数，但在后面的数值分析和研究中，将它简化为常量;

A( x) 为阀芯部分开启时的有效通流面积; ρ 为液压油
密度． 式( 3) 中表达的 A( x) 非常复杂，将它线性化并
写成 A( x) = c1x，其中 c1 = sinαπD为线性系数，描述了
通流面积和阀芯位移之间的线性关系，因为实验中阀

芯位移极小，可以认为线性化非常精确地描述了实际

情况．
式( 5) 表示一次碰撞，v －为碰撞前的速度，v +为碰

撞后的速度，r为碰撞恢复系数．
1. 1 量纲一的形式
为了方便评估系统，将式 ( 4 ) 转化为量纲一的形

式． 引入量纲一的变量 yi ( τ) ( i = 1，2，3) ，其中

τ = t
tref
，y1 =

x
xref
，y2 =

tref
xref

v，y3 =
p
pref
，

tref =
m
槡s ，pref = p0，xref =

Ap0
s ．

式( 4) 可写成量纲一的形式:
f( 1) = y'1 = y2，

f( 2) = y'2 = － κy2 － ( y1 + δ) + y3，

f( 3) = y'3 = β( q － y1 y槡3 )
{

．

( 6)

y +
2 = － ry －

2 ，y
+
3 = y －

3 ． ( 7)

式中量纲一的参数为:量纲一的阻尼系数 κ = ξ
槡ms
;量

纲一的刚度参数 β = E
V

Cdc1A
ρ

2p0m
ρ槡 s ;量纲一的预压缩

参数 δ =
sxp

Ap0
;量纲一的流量 q =

Qpump

Cdc1
Ap0
s 2

p0
槡ρ

．

表 1 为实验室测得的溢流阀物理参数，用于计算
量纲一的参数，当开启压力 popen = 1 MPa，得到 κ =
2. 46，β = 7. 53，δ = 22. 67． 量纲一的阻尼系数很难评
估，所以它是一个近似值．

表 1 溢流阀物理参数

Table 1 Physical parameters of the relief valve

量名称 含义 数值

s 弹簧刚度 26. 7 × 103 N·m －1

m 阀芯质量 0. 0617 kg

ξ 阻尼系数 100 N·s·m －1

p0 大气压力 1 × 105 Pa

A 阀座通流面积 1. 39 × 10 －4 m2

E 油液弹性模量 0. 435 × 109 Pa

V 油液体积 7 × 10 －5 m3

Cd 流量系数 0. 86

ρ 油液密度 870 kg·m －3

c1 线性系数 0. 0112 m

υ 运动黏度 2 × 10 －5 m2·s － 1

D 阀座孔径 0. 0133 m

1. 2 Lyapunov指数分析
Lyapunov指数表征了系统在相空间中相邻轨道间

收敛或发散的平均指数率［18］． Lyapunov指数定义为

λ i = lim
t→∞

λ i ( t)
t ，i = 1，2，…，n．

对动力学系统的解矩阵进行 QＲ 分解后得到对角阵
Ｒ，λ i即为 Ｒ中的对角线元素，从而得到 Lyapunov指数
的特征值．
给出三维情况下 Lyapunov指数的一些性质．
( λ1，λ2，λ3 ) = ( 负，负，负) :稳定定点;
( λ1，λ2，λ3 ) = ( 零，负，负) :稳定极限环;
( λ1，λ2，λ3 ) = ( 零，零，负) :稳定二维环面;
( λ1，λ2，λ3 ) = ( 正，正，零) :不稳定极限环;
( λ1，λ2，λ3 ) = ( 正，零，零) :不稳定二维环面;
( λ1，λ2，λ3 ) = ( 正，零，负) :奇怪吸引子．
Lyapunov指数取值的集合，即 Lyapunov 指数谱决

定了系统在相空间轨线的性质． 当 λ ＞ 0 时，表示长时
间系统在相空间中相邻轨线沿该方向平均发散，反之

收敛． 最大 Lyapunov 指数 λ 决定相邻轨线是( λ ＜ 0 )
否( λ ＞ 0 ) 能靠拢形成稳定轨道或稳定点; 最小 Lya-
punov 指数则表示相空间中所有轨线能 ( λ ＜ 0 ) 否
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( λ ＞ 0 ) 收缩形成稳定吸引子． 根据 Lyapunov 指数的
性质可知道，只要有一个 Lyapunov 指数为正，就可以
判断该系统处于混沌振荡状态．
系统( 6) 的线性变分方程为

Y
·
( t) = J( t) Y( t) ，Y( 0) = I3 ． ( 8)

Y∈Ｒ3 × 3，I3是 3 × 3 的单位矩阵，J( t) 是系统的 Jacobi
矩阵

J( t) =

f( 1)
y1

f( 1)
y2

f( 1)
y3

f( 2)
y1

f( 2)
y2

f( 2)
y3

f( 3)
y1

f( 3)
y2

f( 3)
y















3

=

0 1 0
－ 1 － κ 1

－ β y槡3 0 －
βy1

2 y槡











3

． ( 9)

由于 Y( 0) 是非奇异的，所以对于 t≥0，Y( t) 也是
非奇异的． Y ( t) 可 QＲ 因数分解，记为 Y ( t ) = Q ( t )
Ｒ( t) ，上三角矩阵 Ｒ ( t ) 的对角元素都是正的． 将该
QＲ分解式带入方程( 8) ，有

Q
·
( t) Ｒ( t) + Q( t) Ｒ

·
( t) = J( t) Q( t) Ｒ( t) ，

Q( 0) Ｒ( 0) = I3 ． ( 10)
将式( 10) 左乘 QT，右乘 Ｒ － 1，有

QT ( t) Q
·
( t) + Ｒ

·
( t) Ｒ － 1 ( t) = QT ( t) J( t) Q( t) ，

Q( 0) = I3，Ｒ( 0) = I3 ． ( 11)

图 4 时间序列上的 Lyapunov指数． ( a) q = 14; ( b) q = 22
Fig． 4 Lyapunov exponent time histories: ( a) q = 14; ( b) q = 22

由于 QT ( t) Q( t) = I3，矩阵 K( t) = QT ( t) Q
·
( t) 是斜对

角矩阵，并且由于矩阵 Ｒ( t) 是上三角矩阵，所以 Ｒ
·
( t)

Ｒ － 1 ( t) 也是上三角矩阵． 因此定义

Kij ( t) =

( QT ( t) J( t) Q( t) ) ij， i ＞ j;

0， i = j;
－ ( QT ( t) J( t) Q( t) ) ij ． i ＜{ j．

( 12)

从 K( t) = QT ( t) Q
·
( t) 中可以得到

Q
·
( t) = Q( t) K( t) ，Q( 0) = I3 ． ( 13)

方程( 12) 和方程( 13) 就确定了关于矩阵 Q( t) 的微分
方程． 由于 QT ( t) J( t) Q( t) 是斜对称的，由方程( 11 )
得到

Ｒ
·
'( t) =

Ｒ
·

ii ( t)
Ｒii ( t)

= ( QT ( t) J( t) Q( t) ) ii，Ｒ'i ( 0) = 0．

( 14)
这里 Ｒ'i ( t) = ln( Ｒii ( t) ) ，Lyapunov 指数的时间演化式
为 λ i ( t) = Ｒ'i ( t) / t，所以得到 Lyapunov指数为

λ i = lim
t→∞

Ｒ'i ( t)
t = lim

t→∞
λ i ( t) ，i = 1，2，3． ( 15)

利用 QＲ分解算法和 MATLAB软件计算得到如图
3 所示的 Lyapunov 指数谱，λ1 ＞ λ2 ＞ λ3 ． 可以看到，
q = 12. 55 时，Lyapunov 指数在形态上发生“突变”，在
章节 2. 1 中分析可知，此时发生擦边分岔．

图 3 Lyapunov指数谱
Fig． 3 Lyapunov exponent spectrum

在图 3 中分别取 q = 14 和 q = 22 得到如图 4 所示
的时间序列上的 Lyapunov指数曲线．
当 q = 14 时，Lyapunov指数的计算结果如图 4 ( a)
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所示，Lyapunov 指数最后收敛到 ( λ1，λ2，λ3 ) = ( 零，
负，负) 形式，根据 Lyapunov 指数性质可知，此时系统
处于稳定极限环状态．
当 q = 22 时，Lyapunov指数的计算结果如图 4( b)

所示，Lyapunov指数谱最后收敛到( λ1，λ2，λ3 ) = ( 负，
负，负) 形式，此时系统收敛于稳定平衡点．

2 分岔图

量纲一的流量 q 是最容易改变的参数，因此首先

绘制以 q作为自由参数的单参数分岔图． 其次溢流阀
的预设压力也容易改变，量纲一的预压缩参数 δ 决定
着阀的开启压力，因此通过同时改变 q 和 δ 来得到双
参数分岔图，揭示溢流阀的震荡特性．
2. 1 单参数分岔图
为了绘制分岔图，以 q作为自由参数，对于每一个

q值以一系列不同的初始条件运行仿真，记录瞬变消
失后的点． 选择平面 y2 = 0 作为三维相空间的二维
Poincare截面． 结果如图 5 所示．

图 5 分岔图，κ = 2. 46，β = 7. 53，δ = 22. 67． ( a) 总图，( b，c) 局部放大图
Fig． 5 Bifurcation diagram for κ = 2. 46，β = 7. 53 and δ = 22. 67: ( a) complete diagram，( b，c) details with enlarged scale

考虑将 q从 0 增大为 25．
增大 q，系统处于混沌状态，直到 4. 81 ＜ q ＜ 4. 92

时，出现周期 2 碰撞解． 典型的轨迹如图 6( a) 所示．
当 4. 92 ＜ q ＜ 4. 98 时，出现周期 4 碰撞解． 典型的

轨迹如图 6( b) 所示．
继续增大 q，系统处于混沌状态，直到 7. 29 ＜ q ＜

7. 33时，出现周期 4 碰撞解． 典型的轨迹如图 6 ( c)
所示．
当 7. 33 ＜ q ＜ 8. 65 时，出现周期 2 碰撞解． 典型的

轨迹如图 6( d) 所示．
当 8. 65 ＜ q ＜ 11. 94 时，出现碰撞极限环． 典型的

轨迹如图 6( e) 所示．

当 11. 94 ＜ q ＜ 12. 55 时，出现周期 2 碰撞解． 典型
的轨迹如图 6( f) 所示．
当 q = 12. 55 时，擦边分岔出现，随后是一个稳定

极限环，这意味着振动的振幅增大，直到离开碰撞点

y1 = 0，此时阀芯的位移为零． 在擦边点，只有零速碰
撞出现，用于决定碰撞后速度的重置映射是恒等映射

本身，即碰撞前后速度都为零． 稳定极限环的典型轨
迹如图 6( g) 所示．
当 q = 20 时，出现了一个超临界 Hopf 分岔，然后

随着分岔参数的增大，振幅迅速减小． 这种减小可以
用以下事实解释: 对于这些 q 值，最大 Lyapunov 指数
λ1为负但是相当接近于 0，例如，如图 4 ( b) 所示，当
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图 6 相空间轨迹，红线表示阀芯与阀座碰撞． ( a) 周期 2 碰撞解( q = 4. 85 ) ; ( b) 周期 4 碰撞解( q = 4. 94 ) ; ( c) 周期 4 碰撞解( q = 7. 3 ) ;
( d) 周期 2 碰撞解( q = 8) ; ( e) 周期 1 碰撞解( q = 10) ; ( f) 周期 2 碰撞解( q = 12) ; ( g) 周期 1 非碰撞解( q = 14)
Fig． 6 Phase space trajectories along bifurcation diagram． Ｒed lines represent that the poppet impacts the seat: ( a) period-two impacting ( q =
4. 85) ; ( b) period-four impacting ( q = 4. 94) ; ( c) period-four impacting ( q = 7. 3) ; ( d) period-two impacting ( q = 8) ; ( e) period-one impacting
( q = 10) ; ( f) period-two impacting ( q = 12) ; ( g) period-one non-impacting ( q = 14)

q = 22 时，λ1 = － 0. 06．
2. 2 双参数分岔图
图 7 为分岔示意图，HB 代表 Hopf 分岔，GＲ 代表

擦边分岔，PD代表倍周期分岔． 同时改变两个分岔参
数 δ和 q，可得到图 8 所示的双参数分岔图．
从图 8 的双参数分岔图可以看出，随着 δ的变化，

单参数分岔图并没有性质上的改变．
当 0 ＜ q ＜ qPD1时，系统表现为颤振行为，振幅随着

q的增大而增大．
当 qPD3 ＜ q ＜ qPD4时，系统表现为混沌行为．
当 qPD6 ＜ q ＜ qPD7时，为周期 1 碰撞解，相位图上表

现为一个稳定极限环．
当 qGＲ ＜ q ＜ qHB时，为周期 2 非碰撞解，此时阀芯

完全打开，振幅随着 q的增大而减小．

最后，当 q ＞ qHB时，系统出现稳定平衡解．

3 动态测试

为了验证动力学模型的正确性，搭建测试平台如

图 9 所示． 动力部分由电机 1 和泵 2 提供，安全阀 3 用
来防止系统过载，压力传感器 5、流量传感器 6 和阀芯
位移传感器 8 输出信号进入数据采集仪 9，由计算机
10 显示和存储． 动态测试在预设压力 popen = 1MPa ( 弹
簧预压缩量 x0 = 5 mm) 下进行． 从低流量开始，通过比
例调速阀 4 逐步增大到最大流量 ( 约 120 L·min －1 ) ．
在每个流量值情况下，记录溢流阀入口压力和阀芯

位移．
保持预设压力不变，通过改变流量来描述系统典

型的动态特征，测试结果如图 10 的分岔图所示． 图 11
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图 7 分岔示意图． HB代表 Hopf分岔，GＲ代表擦边分岔，PD代
表倍周期分岔

Fig． 7 Qualitative bifurcation diagram． Bifurcations are labeled HB
for Hopf bifurcation，GＲ for grazing bifurcation and PD for period-
doubling bifurcation

图 8 双参数分岔图( 当 δ = 22. 67 时，单参数分岔图如图 5( a) 所
示)

Fig． 8 Two-parameter bifurcation diagram ( at δ = 22. 67，the one-
parameter cut is shown in Fig． 5( a) )

( a) ～ ( d) 为 4 种典型运动类型: ( a) 混沌碰撞振荡;
( b) 碰撞振荡; ( c) 无碰撞振荡; ( d) 稳态平衡．
从图 10 可以看出，小流量时阀芯是不稳定的，呈

现出混沌的运动形式，通过增大流量，振荡幅值增大．
流量达到大约 20 L·min －1时，进入周期性碰撞运动，直

到 57 L·min －1，也即擦边分岔，阀芯离开阀座，非碰撞

周期振荡开始，随着流量的增大，振荡幅值减小． 在临
界值 92 L·min －1时，阀芯变得稳定，此时为 Hopf分岔．

4 结论

( 1) 分析并计算了量纲一的流量系数 q = 0 ～ 25
时 Lyapunov指数曲线，当 q = 14 时系统处于稳定极限
环状态，当 q = 22 时系统收敛于稳定平衡点．
( 2) 利用非光滑动态理论，通过以 q 作为自由参

数的单参数分岔图，及同时改变 q 和 δ 得到双参数分
岔图． 随着流量增大，系统经历了颤振、混沌、碰撞及

1—电机; 2—泵; 3—安全阀; 4—比例调速阀; 5—压力传感器;
6—流量传感器; 7—溢流阀; 8—阀芯位移传感器; 9—数据采集
仪; 10—计算机

图 9 测试平台
Fig． 9 Test platform

图 10 缓慢改变流量的测试分岔图
Fig． 10 Measured bifurcation diagram of the system while slowly var-
ying the flow rate

稳定平衡的过程．
( 3) 小流量时阀芯是不稳定的，呈现出混沌的运

动形式． 增大流量到 20 L·min －1，系统进入周期性碰撞

运动． 直到 57 L·min －1，当阀芯离开阀座，擦边分岔之

后，非碰撞周期振荡开始． 92 L·min －1之后，Hopf 分岔
出现，阀芯变得稳定．
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