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以煤泥为还原剂海滨钛磁铁矿直接还原焙烧反应
历程
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摘 要 研究以煤泥为还原剂，印尼某海滨钛磁铁矿在直接还原焙烧过程中，不同焙烧温度下矿物组成变化规律． X射线衍
射和扫描电镜分析结果表明，随着焙烧温度的升高，钛磁铁矿逐渐被还原． 其中铁矿物经过浮士体( FeO) ，最终被还原成金属
铁;而钛则经过钛尖晶石最终生成钛铁矿和少部分的铁板钛矿． 在整个直接还原焙烧过程中，金属铁颗粒在 1100 ℃左右生
成，然后不断长大，在 1250 ℃时金属铁颗粒明显增多，在之后的保温过程中，金属铁颗粒不断长大，并在此过程中将金属铁从
中分离出来．
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近年来，随着矿产资源的开发利用，人们越来越意

识到陆地矿山资源的有限性，而海滨砂矿作为一种储

量较为丰富的海洋矿产资源则越来越受到各国的广泛

重视． 海滨砂矿主要是指在海滨地带由河流、波浪、潮
汐、潮流和海流作用，使砂质沉积物中重矿物碎屑富集

而形成的矿床［1］，其主要特点是粒度细、品位高和分布
广［2］． 海滨砂矿中矿物类型主要以钛铁矿、钛磁铁矿
和磁铁矿为主［3］． 钛磁铁矿作为铁矿石的一种，其开
发利用对于缓解现有的铁矿石资源紧张等问题具有重

要意义． 目前，已有不少海滨钛磁铁矿被开采利用，但
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是在选别过程中，存在铁精矿中铁的品位和回收率偏

低、钛的含量偏高、钛铁分离较差等问题，卫敏等［4］对
印尼桑义赫岛的海滨钛磁铁矿通过磁选--磨矿--磁选--

磁筛的方法，最终得到铁品位 58. 34%、回收率
59. 68%及 TiO2品位 8. 26%、回收率 65. 82%的钛铁精
矿，精矿中铁的品位和回收率均偏低，而钛大量存在于

铁精矿中，影响铁精矿的质量．
不少学者［5

--7］采用重选、磁选等传统的选矿工艺
对海滨钛磁铁矿进行选别，得到的铁精矿中铁的品位

一般不高于 60%，而 TiO2品位则基本不低于 8%，这种
铁精矿同样达不到炼铁的要求，钛存在于铁精矿中，没

有被单独富集，也造成钛资源的浪费． 高本恒等［8］将
印尼某海滨砂矿的精矿采用直接还原--磨矿--磁选的
工艺处理，得到铁品位 91. 06%、铁回收率 97. 27%、
TiO2品位 1. 6%的直接还原铁粉，直接还原铁粉中铁的
品位和回收率明显提高，但钛的品位仍然偏高． 高恩
霞等［9］以煤为还原剂对印尼某海滨钛磁铁矿通过直接

还原焙烧--磨矿--弱磁选的工艺，得到铁品位 93. 74%
铁回收率 95. 91%、TiO2品位 0. 45%的还原铁粉，较好
地实现钛铁分离． 目前，对于直接还原焙烧的研究中，
还原剂多采用无烟煤、烟煤等质量较好的煤粉［9--10］．
笔者在研究中发现，用煤炭洗选加工过程中的副产

品———煤泥代替煤粉作为海滨钛磁铁矿直接还原焙烧
的还原剂，能够得到铁品位和铁回收率高于 90%，TiO2

品位低于 0. 8%的直接还原铁产品［11］． 同时，在研究
中发现，焙烧温度对直接还原焙烧产品的指标有着重

要影响，但其原因和机理尚不清楚． 因此，本文的目的
是研究以煤泥为还原剂时海滨钛磁铁矿直接还原焙烧

反应过程中矿物组成的变化和微观结构的变化，以探

明温度对直接还原焙烧过程的影响并确定适宜的焙烧

温度条件．

1 原料性质

研究所用原矿为印尼某海滨钛磁铁矿( 以下称为

原矿) ，原矿中 TFe 和 TiO2的品位分别为 51. 85%和
11. 33%，基本不含 V，S和 P含量均较低． 原矿中有用
矿物主要为钛磁铁矿，还含有少量钛铁矿，脉石矿物主

要是方镁石、菱镁矿、石英、辉石、透辉石等． 原矿详细
性质参见文献［11］．
研究所用还原剂为煤泥 TJ ( TJ 为煤泥代号) ，其

煤质分析以空气干燥基计，各成分的质量分数为:水分

1. 42%，灰 分 29. 73%，挥 发 分 26. 75%，固 定 碳
43. 52% ． 可见，煤泥 TJ 中灰分和固定碳含量较高，挥
发分含量较低．
研究所用添加剂为 YSE 和 YHG． 其中，YSE 和

YHG为 2 种不同的添加剂代号． YSE 为纯度 80%的
工业品，YHG为分析纯．

2 实验方法

将原矿与 18% 的煤泥 TJ、8% 的 YSE 和 3% 的
YHG混合均匀后置于石墨坩埚中，加盖后在室温放入
马弗炉中，调节马弗炉的升温速度为 10 ℃·min －1 ． 在
焙烧温度为 500、700、900、1100、1150、1200 和 1250 ℃
时各取出一个坩埚，最后在 1250 ℃保温 60 min 后取出
一个坩埚，取出的坩埚立即放入水中急冷，以保持该温

度下焙烧产物应有的矿物组成和微观结构．
最后，将冷却后的焙烧产物均分为 2 份，其中一份

经过制样机磨细后用 X 射线粉晶衍射 ( XＲD) 分析矿
物成分的变化; 另一份制成光片，用扫描电镜 ( SEM)
观察其微观结构变化．
所用 X 射线粉晶衍射仪为 Ｒigaku ( 日本理学 )

Dmax-ＲD12kW;扫描电子显微镜为 CAMBＲIDGE ( 德
国卡尔蔡司) S--360，EVO18．

3 焙烧温度对焙烧产物组成的影响

用 X射线衍射仪对不同焙烧温度的焙烧产物进
行分析，结果如图 1 所示． 从图 1 中可以看出，焙烧温
度为 500 ℃时，焙烧产物中主要为钛磁铁矿( B) 、钛铁
矿( C) 、石英( G) 和 YSE ( F) ，原矿中存在的辉石( J)
等脉石矿物受热后转变为非晶态物质，其衍射峰消失．
这说明在 500 ℃以前，原矿中主要矿物并未发生反应．
温度升高到 900 ℃时，有 FeO ( D) 生成，说明钛磁铁矿
( B) 还原成 FeO ( D ) 是在 700 ～ 900 ℃之间开始的．
500 ～ 700 ℃之间矿物并未发生明显变化，到 1150 ℃
时，FeO ( D) 消失，说明 FeO ( D) 还原成金属铁( A) 是
在 900 ～ 1150 ℃之间完成的． 1100 ℃时有金属铁( A)
生成，钛磁铁矿( B) 的衍射峰强度减弱，钛磁铁矿( B)
逐渐进行反应． 到 1150 ℃时，焙烧产物中矿物基本为
生成的金属铁( A) 和剩余的钛磁铁矿( B) ． 随着温度
的升高，1200 ℃时，焙烧产物中有钛尖晶石 ( H) ，说明
钛磁铁矿( B) 转变为钛尖晶石( H) 是在 1150 ～ 1200 ℃
之间开始的． 到 1250℃时，钛尖晶石( H) 消失，出现钛
铁矿( C) 和少量的铁板钛矿( E) ，说明钛尖晶石( H) 转
变为钛铁矿( C) 和铁板钛矿( E) 是在 1250 ℃以前完成
的． 最后，在 1250℃保温 60min后，焙烧产物中主要为
金属铁( A) ，且有部分钛铁矿( C) 和少量在 1250 ℃之
前开始生成的铁板钛矿( E) 以及少量未能反应的钛磁
铁矿( B ) ． 添加剂 YSE ( F ) 在 1150 ℃后消失，说明
YSE ( F) 在 1150℃之前并未起作用，或基本没有反应，
在 1150 ℃之后发生反应，晶型被破坏，衍射峰消失．
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A—金属铁; B—钛磁铁矿( Fe2. 75 Ti0. 25O4 ) ; C—钛铁矿( FeTiO3 ) ;

D—浮士体( FeO) ; E—铁板钛矿 ( Fe2 TiO5 ) ; F—YSE; G—石英;

H—钛尖晶石 ( Fe2 TiO4 ) ; I—霞石 ( 铝硅酸钠 ) ; J—辉石 ( ( Fe，

Mg) ( Si2O6 ) )

图 1 不同焙烧温度产物的 X射线衍射图谱
Fig． 1 XＲD patterns of products obtained at different roasting tem-
peratures

图 2 焙烧产物扫描电镜照片． ( a) 500 ℃ ; ( b) 700 ℃ ; ( c) 900 ℃ ; ( d) 1100 ℃
Fig． 2 SEM images of roasting products: ( a) 500 ℃ ; ( b) 700 ℃ ; ( c) 900 ℃ ; ( d) 1100 ℃

从图 1 中可以看出，原矿中含铁矿物的反应历程
主要为钛磁铁矿 ( Fe2. 75 Ti0. 25 O4 ) →FeO→Fe，这与 Liu
等［12

--13］研究的铁精矿的煤基直接还原历程 Fe3 O4→
FeO→Fe 是一致的． 原矿中的钛则遵循以下反应过

程:钛磁铁矿 ( Fe2. 75 Ti0. 25 O4 ) →钛尖晶石 ( Fe2 TiO4 ) →
钛铁矿( FeTiO3 ) ，有少部分钛尖晶石( Fe2TiO4 ) 转变为

铁板钛矿( Fe2 TiO5 ) ，在反应过程中钛磁铁矿 ( Fe2. 75-
Ti0. 25O4 ) 中铁逐渐被还原为金属铁，从钛磁铁矿中分

离出来．
兰尧中［14］在对钛磁铁矿和其他铁氧化物的还原

性进行比较时发现，还原中钛铁矿、钛磁铁矿、Fe2O3和

Fe3O4的还原性从易到难的顺序为 Fe2 O3 ＞ Fe3 O4 ＞钛
磁铁矿 ＞钛铁矿． 由此可见，钛磁铁矿中铁要完全还
原是非常困难的． 因此，在实验中通过添加添加剂
YHG和 YSE来降低焙烧过程中物料的熔点，增强原矿
与还原剂等的接触，促进直接还原反应的进行． 同时
从图 1 中可看出，控制在 1250℃下保温 60 min，钛磁铁
矿中铁尽可能地被还原出来，有助于后续磨矿--磁选
的进行．

4 不同焙烧温度焙烧产物的微观结构变化

为查明直接还原焙烧过程中不同温度下焙烧产物

中矿物的形态和大小、矿物间嵌布关系等的变化，用扫
描电子显微镜 ( SEM) 对焙烧过程中不同焙烧温度下
焙烧产物的微观结构进行研究，其结果如图 2 和图 3
所示． 图 2 为 500、700、900 和 1100 ℃时焙烧产物的扫
描电镜照片，图 3 为 1150、1200、1250 和 1250 ℃保温
60 min的焙烧产物的扫描电镜照片．
由图 1 的结果可知，在 500 ℃和 700 ℃时，焙烧产
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图 3 焙烧产物扫描电镜照片． ( a) 1150 ℃ ; ( b) 1200 ℃ ; ( c) 1250 ℃ ; ( d) 1250 ℃保温 60 min
Fig． 3 SEM images of roasted products: ( a) 1150 ℃ ; ( b) 1200 ℃ ; ( c) 1250 ℃ ; ( d) 1250 ℃ for 60 min

物中以钛磁铁矿为主，矿物组成并未发生明显变化，对

比图 2 中 500℃和 700℃的扫描电镜照片，发现矿物的
微观结构逐渐改变，矿物颗粒的边缘逐渐模糊，但变化

不明显． 对比图 2 中扫描电镜照片可知，在500 ～
1100 ℃过程中，焙烧产物中矿物颗粒间仍保持独立，
颗粒边缘逐渐趋于模糊，此阶段主要矿物仍以钛磁铁

矿为主，但在 900 ℃时可看到有浮士体( FeO) 存在，在
1100 ℃时 FeO仍存在，并有少量金属铁生成，生成的
金属铁夹杂在钛磁铁矿中，含钛矿物与金属铁并未分

离，因此此时钛磁铁矿仅处于直接还原焙烧反应的初

级阶段，钛铁矿物仍以原矿中的钛磁铁矿形式存在，生

成的金属铁颗粒也极其微小，大约在 2 μm左右． 此条
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件下进行磨矿--磁选，很难得到合格的直接还原铁
产品．
从图 1 的 X 射线衍射分析结果可知，在焙烧温度

达到 1150 ℃后焙烧产物中 FeO 消失，在 1200 ℃时钛
磁铁矿大部分转变为钛尖晶石和还原出来的金属铁，

而达到 1250 ℃后钛尖晶石大部分转变为钛铁矿，少部
分变为铁板钛矿． 结合图 3 中的扫描电镜照片，从
1150 ℃开始，焙烧产物的矿物颗粒内部逐渐熔融，不
断有亮白色的金属铁颗粒生成，含钛矿物逐渐以钛铁

矿为主．
从图 3 中 1150 ℃的扫描电镜照片可以看出，矿物

颗粒仍独立存在，并没有熔融到一起，但矿物颗粒内部

明显反应． 从 1150 ℃中 A 区域局部放大的扫描电镜
照片中可看出，矿物颗粒内部生成 1 μm左右的金属铁
颗粒，金属铁颗粒与反应不完全的钛磁铁矿夹杂在一

起． 在此温度下，生成的金属铁颗粒较小，并且还有相
当部分的钛磁铁矿反应不完全．
从图 3 中 1200 ℃的扫描电镜照片可以看出，此时

焙烧产物中矿物颗粒逐渐熔融连接到一起，亮白色的

金属铁颗粒逐渐增多． 从 1200 ℃中 B 区域局部放大
的扫描电镜照片中可看出，生成的金属铁颗粒明显长

大，达到 5 μm左右，部分金属铁颗粒熔融连接到一起，
在铁颗粒的间隙存在的主要是钛磁铁矿在还原过程中

生成的钛尖晶石，以及少部分脉石． 在 1200℃左右，钛
磁铁矿 ( Fe2. 75 Ti0. 25 O4 ) 基本上完全还原成钛尖晶石

( Fe2TiO4 ) ，钛磁铁矿( Fe2. 75 Ti0. 25 O4 ) 中 Fe 大部分被还
原成金属铁． 从扫描电镜照片中可以看出，此时的金
属铁颗粒虽有一定程度的长大，但金属铁颗粒仍与钛

尖晶石以及脉石相间分布，共生关系密切，金属铁颗粒

比较分散，在这种条件下进行磨矿--磁选，很难达到使
金属铁颗粒从钛尖晶石等矿物中解离出来的磨矿

细度．
从图 3 中 1250 ℃的扫描电镜照片可以看出，焙烧

产物中矿物颗粒已经完全熔融在一起． 从 1250 ℃中 C
区域局部放大的扫描电镜照片中可以看出，亮白色的

金属铁颗粒长大，大致在 10 μm 左右，且数量增多，相
对集中在一起，生成的钛铁矿大部分分布在金属铁颗

粒的周围，部分呈条状分散在脉石中，金属铁部分仍包

裹在钛铁矿中，这种条件下进行磨矿--磁选，很难达到
很好的钛铁分离效果． 从 1250℃下保温 60min的扫描
电镜照片中可知，在延长焙烧时间的过程中，金属铁颗

粒不断熔融长大，分布更为集中． 从 1250 ℃ 保温
60 min中 D 区域局部放大的扫描电镜照片中可知，此
时金属铁颗粒粒度可达 20 μm 左右，而只有少部分钛
铁矿分布在金属铁颗粒的周围，大部分分布在脉石中，

由于金属铁颗粒的长大，此时进行磨矿，能够较容易地

使金属铁颗粒达到单体解离，从而有助于将金属铁从

中分离出来，得到合格的直接还原铁产品，而经过弱磁

选，钛铁矿则主要集中在尾矿中．

5 结论

( 1) 煤泥作还原剂时，印尼某海滨钛磁铁矿直接
还原焙烧过程中铁的直接还原反应历程主要为钛磁铁

矿( Fe2. 75Ti0. 25O4 ) →浮士体( FeO) →金属铁( Fe) ，而钛
的反应过程为钛磁铁矿 ( Fe2. 75 Ti0. 25 O4 ) →钛尖晶石
( Fe2 TiO4 ) →钛铁矿 ( FeTiO3 ) ，有少部分钛尖晶石

( Fe2TiO4 ) 转变为铁板钛矿( Fe2TiO5 ) ．
( 2) 焙烧温度影响印尼某海滨钛磁铁矿的直接还

原焙烧反应． 在 1100℃之前，随着温度的升高，焙烧产
物中矿物颗粒边缘趋于模糊，颗粒内部趋于松散，但并

未发生熔融;在 1100 ℃左右时，开始有金属铁生成;之
后随着焙烧温度的升高，金属铁颗粒逐渐长大，直到

1250 ℃左右，焙烧产物中矿物颗粒熔融明显，金属铁
与钛铁矿物有明显分离迹象．
( 3) 延长焙烧时间可以使金属铁颗粒不断长大并

从钛铁矿物中不断分离出来． 在 1250℃的温度下保温
60 min，期间，金属铁颗粒不断长大，钛铁矿不再完全
包裹在金属铁颗粒的周围，而是分布在脉石中，在保温

的过程中金属铁从钛铁矿中分离，有助于后续的磨矿--

磁选．
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