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Transverse mixing of binary solid materials in a rotating kiln
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ABSTRACT In order to investigate the effect of particle size difference and density difference on the mixing mechanism of binary
granular materials within a rotating kiln a kinematic model of particles was established using the discrete element method and the
transverse mixing process of granular materials in the rolling regime within the rotating kiln was simulated. The mixing index was
defined by contact-number between particles and the effects of particle volume ratio and density ratio on the mixing index were
analyzed using Hong’s theory: competition between percolation and condensation. The results show that the percolation mechanism
improves with increasing volume ratio o between particles but the condensation mechanism improves with increasing density ratio 7.
Segregation will occur in the radial direction of the rotating kiln no matter percolation or condensation plays the leading role resulting in
the decrease of mixing degree. Percolation and condensation can balance each other for some reasonable particle volume and density
combinations where the binary granular materials could get uniformly mixed. There is a power function relationship between particle
volume ratio and density ratio when percolation and condensation balance each other.
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Table 1 Parameters used in the DEM model : A B
B Ry /mm 3
B pp/(kgem %) 2456
- Hipp 0. 63
- Mppp /MM 0.05
- ey /mm 0.3
- . 0.85
E,/Pa 5.5 %10 3 3
E,/Pa 2 x 10" Fig.3 Particles with three different mixing states
- € 0.45 2
- [ 0.5 Table 2 Value of the mixing entropy and contact-number
&, 0.25 1 2 3
& 0.3 0. 693 0. 693 0.693
d/mm 200 4 12 24
[/mm 30
g/(mes™?)
At/s 9.81 . Van
Puyvelde
4.34x10°°
a o=V V;

n N =PaPy 0N
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Fig.4 Schematic of particle flow in the rolling regime
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Fig.9 Equilibrium curve between percolation and coagulation
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