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ABSTRACT The Hopkinson experiment system was used to do the dynamic tensile experiment of 800 MPa grade cold rolled dual
phase steel ( DP800) . The strain rate was determined as 500 1000 and 2250 s '. By comparing the experimental results both the
yield strength (R, ,) and the tensile strength ( R,) of the dual phase steel increase with strain rate in the exponential form. The plas—
tic deformation at high strain rate leads to adiabatic temperature rise effect. The adiabatic temperature rise is 89 °C at the 2250 s ™'
strain rate. Based on the J—C ( Johnson—Cook) model and Z—A ( Zerilli—Armstrong) model the constitutive model of the dual phase
steel was researched. The quadratic polynomial of strain rate effect of the J—C model was modified. The average coefficient of determi—
nation increases from 0. 9228 to 0. 9886 by modifying the J—C model.
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’ DP800 Hopkinson
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22505 ",
Hopkinson 1 mm
1
800 MPa C—Mn—Si 5 1
1 . 30 kg 1 a)
2k L 1(b)
1 DP800 ( ) .
Table 1 Chemical composition of DP800 steel %
C Si Mn P S Nb
0.19 0.75 1.95 0. 005 0. 004 0. 044 2

Fig.1 Physical pictures of the samples and clamps: (a) samples; (b) clamps and connections between the clamps and the draw bars

500 ~22505 ")
R, R

m

2 DP800

Table 2 Mechanical properties of DP800 in dynamic tensile experiment

Fig.2 Dimensions of the dynamic stretching sample ( unit: mm) /sl R, /MPa R, /MPa 1% Ry,/R,
3 DP800 500 1000 405 808 15. 1 0. 50
2250~ 500 510 944 12.0 0.54
3 . 3 1000 551 1002 11.6 0.55
2250 598 1067 11.0 0. 56
2
2.5x107 s 2 2.2

DP800 (
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Fig.3 Dynamic tensile curves of DPS00 at high strain rate ( repeat 3 times) : (a) 500s~'; (b) 1000s~'; (¢) 2250s~"
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Table 3  Parameters of the fitting curves of plastic elongation strength
Il)fl()i 7]3;7[(7; ! ] J I I(J.J 10! iﬁ B ](;- |(;4 10° and tensile strength to strain rate
Ao ahs s Bt -t
0775 1 A/MPa B/MPa m
4 DP8oO - - Ro» 418. 84 6.99 0.023
Fig.4 Fitting stress—strain curves of DP800
R, 821.71 8. 66 0.017
2.3
DP800

&) =A+B&"
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DP80O0
2.4 N 10%
4
( energy absorption before 4 DP800
fracture) R ( energy absorption before neck— Table 4 Energy absorption of DP800 at different strain rates
ing) 10% 0 10%
Ny . [r— Ene(:king/ Ege |
Ef e = z o(h e(k) —e(k-1) (4) e (Jemm ~?) (Jemm3) (Jemm ™)
=
Ry, +R, 500 0. 106 0.076 0. 084
necking — i 22 X d, ( 5)
N 1000 0.107 0.077 0. 090
Egy =Y ok e(k) -e(k-1) . (6) 2250 0.110 0.078 0. 099
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Fig.8 Comparison between the experimental values and the calculated values of DP800 steel by the J=C model at different strain rates: (a) 1 x10~*
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Table 5 Goodness of fit of the J—C model at different strain rates

&/s! D’
1x10~* 0.9516
1x1073 0. 9406
1x1072 0.9276
0.9228
500 0.9137
1000 0. 9058
2250 0.8973
3.2 Z—A
Zerilli  Armstrong ¥ 1987

(b) 1x1073s7 " (e) 1x1072s71;(d) 500s7";(e) 1000s~'; () 2250s""

Zerilli—Armstrong

o, =0,+Cexp( —C,T+C,Tlng) +C,e". (11)

o, e e,
C,.C,.C, C,
7—A
o, =0, +c&l +e,e" (12)
o, & £
¢, c, n
m
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sTh(b) 1x1073 s (¢) 1x1072s7";(d) 500s";(e) 1000s~";(f) 2250s~"

6

DP800

J—C

Z—A

:DP800  Z—A
J—C

DP800

6 Z—A

Table 6 Goodness of fit of the Z—A model at different strain rates

&/s! D?
1x10~* 0. 9474
1x107? 0. 9372
1x102 0. 9389
500 0.9298 0- 9386
1000 0.9396
2250 0.9387
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