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薄板坯连铸连轧工艺下 Hi--B钢的组织及织构
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摘 要 采用金相显微镜和扫描电镜研究实验室模拟薄板坯连铸连轧( TSCＲ) 工艺试制的高磁感取向硅钢( Hi--B 钢) 组织、

织构的演变特征． 研究发现实验室模拟薄板坯连铸连轧工艺试制的 Hi--B钢热轧板显微组织及织构在厚度方向上存在不均
匀性． 常化板表面脱碳层铁素体晶粒明显粗化，常化板织构基本继承了热轧板相应的织构类型，仅织构强度不同． 一次大压
下率冷轧后，晶粒及其晶界沿轧向被拉长形成鲜明的纤维组织，织构主要为 α纤维织构和 γ纤维织构，脱碳退火后试样发生
回复和再结晶现象并形成初次晶粒组织，脱碳退火后织构分布较为集中． 温度升高至 1000℃时二次再结晶开始，1010℃时钢
中晶粒发生异常长大，高斯织构强度达到 61. 779． 成品磁感为 1. 915 T，铁损为 1. 067 W·kg －1 ．
关键词 硅钢; 薄板坯连铸连轧( TSCＲ) ; 微观组织; 织构
分类号 TG142. 1

Microstructure and texture of Hi--B steel produced by TSCＲ process

XIAO Li-jun，WANG Hai-jun，XIANG Li，FU Bing，QIU Sheng-tao

National Engineering Ｒesearch Center of Continuous Casting Technology，Central Iron and Steel Ｒesearch Institute，Beijing 100081，China

 Corresponding author，E-mail: whjchina@ yeah． net

ABSTＲACT The microstructure and texture evolution of Hi--B steel produced by thin slab casting and rolling ( TSCＲ) process in
the laboratory was studied by metalloscopy and scanning electron microscopy． It was found that the microstructure and texture of the hot

rolling slab of Hi--B steel，which was manufactured by simulated TSCＲ process in the laboratory，was inhomogeneous along the thick-
ness direction． Ferrite grains in the surface decarbonization layer of the normalizing slab obviously coarsen; moreover，the texture of
the normalizing slab inherited the texture type of the hot rolling slab，with only a difference in texture density． After cold rolling with
big reduction rate，the coarse grains and grain boundaries were stretched to be fibrous bands in the rolling direction，and the α fiber
texture and the γ fiber texture were the main texture style． With the decarburizing annealing carrying out，the recovery and recrystalli-
zation of the cold rolling slab occurred，primary recrystallization grains formed，and the texture was more centrally distributed． When
the temperature increased to 1000℃，secondary recrystallization appeared; at 1010℃ the Goss grains grew up，and the Goss texture
intensity reached to 61. 779． By testing，the products had a magnetic induction of 1. 915 T and an iron loss of 1. 0671 W·kg －1 ．
KEY WOＲDS silicon steel; thin slab casting and rolling ( TSCＲ) ; microstructure; texture
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取向硅钢以其优良的软磁性能被广泛运用于电

力、电子以及国防军事工业中，是一种优良的软磁材
料［1

--3］． 研究表明，取向硅钢的微观组织、织构决定宏
观性能，而组织、织构与生产工艺密切相关［3--4］，对取
向硅钢全流程生产过程中不同工序段微观组织、织构

的成因、演变规律以及与宏观磁性能的关系进行研究，
有助于生产过程的质量控制． 国内外众多学者［5--7］开
展了对金属微观组织及织构的研究工作，以期能更好

地控制金属组织、织构，生产高性能的产品．
薄板坯连铸连轧 ( thin slab casting and rolling，
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TSCＲ) 工艺与传统工艺相比，具有高铸坯凝固速度、低
铸坯加热温度等主要特点，薄板坯流程的铸坯厚度

( ＜ 100 mm) 远小于传统连铸坯厚度( 200 ～ 300 mm) ，
薄板坯经均热炉加热后，无需粗轧，直接轧制成 1. 2 ～
2. 0 mm厚度的热轧带卷． 在缩短流程的同时，最终能
得到较高性能的产品． 随着薄板坯连铸连轧工艺总体
水平的不断进步，与取向硅钢生产过程中的后处理工

艺有机结合将更显示出其独特的技术特征与优越

性［8
--9］． 因此，本研究在实验室模拟薄板坯连铸连轧工
艺试制 Hi--B 钢，对其全流程中的组织和织构进行定
量性分析检测，阐述其在全流程生产过程中组织和织

构的演变规律，为 Hi--B 钢的薄板坯连铸连轧工艺的
工业化生产提供理论参考．

1 实验

实验室模拟薄板坯连铸连轧工艺制备高磁感取向

硅钢，其化学成分如表 1 所示． 铸坯由真空感应炉冶
炼，钢水浇注到 50 mm × 100 mm × 400 mm 的水冷铜模
中，铸坯热脱模温度不低于 950 ℃，脱模后直接装入设
定温度为 1180 ℃的保温炉中，保温 0. 5 h 后热轧至
2. 3 mm，后经两段式常化处理，一次冷轧至 0. 3 mm，高
温退火阶段在 100%高纯 H2气氛下进行 1210 ℃保温
8 h净化处理，采用“中断法”对通过薄板坯连铸连轧工
艺生产的高磁感取向硅钢二次再结晶过程中的组织和

织构演变进行研究，分析 900 ～ 1030 ℃范围内高磁感
取向硅钢二次再结晶行为． 在 900 ～ 1000 ℃范围内每
隔 50 ℃取样; 为了更好地确定二次再结晶温度，在
1000 ～ 1030℃范围内每隔 10℃取样． 文中 S表示样品
相对厚度．

表 1 高磁感取向硅钢化学成分( 质量分数)

Table 1 Chemical components of Hi--B steel %

C Si Mn Cu S Als N P

0. 049 3. 11 0. 11 0. 18 0. 0047 0. 030 0. 011 0. 02

将各工序样品沿轧制方向取样并制成实验样品，

样品尺寸为 8 mm × 10 mm． 在金相显微镜下观察其低
倍组织，用 ZEISS--200MAT 金相显微镜观察试样低倍
组织并采集图像，借助配有 EDAX OIM 电子背散射衍
射( EBSD) 系统的蔡司 ZEISS SUPＲA 55VP 扫描电子
显微镜进行织构检测，采用 OIM Analysis 6. 1 织构分析
软件进行 ODF分析．

2 结果与分析

2. 1 热轧组织及织构分析

图 1 为热轧板的横断面和纵断面组织图( 其中 ND
表示轧制法向，TD 表示轧制横向，ＲD 表示轧制轧

向) ． 由于在热轧过程中，伴随回复和再结晶过程，以
及板坯在热轧过程中受力分布不均，使热轧板沿板厚

方向组织不均匀，其可分为三个区域，即表面脱碳层、
过渡层和中心层． 表面脱碳层主要为细小的呈不规则
多边形状的铁素体晶粒，尺寸约为 10 ～ 50 μm;过渡层
为略伸长的较粗大再结晶晶粒和经过一定回复的形变

晶粒混合组织;中心区为更粗大的经过回复的形变晶

粒，略伸长的再结晶晶粒数量减少，但尺寸更大．

图 1 热轧板组织图． ( a) 横断面金相组织; ( b) 纵断面金相组织
Fig． 1 Microstructures of the hot rolling slab: ( a) microstructure in
the transverse direction; ( b) microstructure in the rolling direction

图 2 是热轧板 ( ( φ1，Φ，φ2 ) 为欧拉角，即 φ2 =
45°) 不同厚度处的 ODF 图． 从 ODF 图及含量统计表
可以看出:在 S = 0 的位置，表现出很强的高斯织构组
分、{ 554} ＜ 225 ＞、{ 332 } ＜ 113 ＞组分以及部分 α 面
织构;在 S = 1 /4 处，高斯织构沿着 ＲD( 轧制方向) 转
动，高斯织构消失，转变为 γ 面织构，另外 α 面织构转
动为立方织构; 在 S = 1 /2 处，表现出很强的 { 001 }
＜ 110 ＞立方织构．
图 3 为热轧板不同厚度的 α、γ 和 η 取向线图

( f( g) 为取向分布密度函数) ． 从 α 取向线分析可知，
晶粒取向主要集中在{ 115 } ＜ 110 ＞位向附近，{ 115 }
＜ 110 ＞织构随着厚度的增加，其强度不断增加． 热轧
板表层主要织构为 Goss 织构，如 η 取向线分析图所
示，并在 S = 0 处取得最大值，说明 Goss织构主要分布
在热轧板的表层． 从 γ 取向线可以得出在热轧板中心
处织构主要为 γ 纤维织构，{ 111 } ＜ 110 ～ 112 ＞ 织构
在中心层织构密度最高，次表层几乎不含有 { 111 }
＜ 112 ＞织构．
热轧板在厚度方向上，织构存在明显的不均匀性，

这种不均匀性对于二次再结晶具有十分重要的作

用［10
--11］，其不均匀性主要是由于在热轧过程中次表层

中的动态再结晶以及部分相变，使其表层中保持了
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图 2 热轧板不同厚度的 φ2 = 45° ODF图． ( a) S = 0; ( b) S = 1 /4; ( c) S = 1 /2

Fig． 2 ODFs section of φ2 = 45° at different thicknesses in the hot rolled slab: ( a) S = 0; ( b) S = 1 /4; ( c) S = 1 /2

图 3 热轧板不同厚度方向上 α、γ 和 η取向线
Fig． 3 Orientation distribution densities along α，γ and η fibers at different thicknesses in the hot rolled slab

Goss取向晶核［12］． 与传统厚板坯流程相比，由于薄板
坯厚度降低，可以减少中心区域具有{ 001 } 位向的晶
粒，而{ 001} 织构是稳定的冷轧织构且具有最低的储
能，在高温退火过程中最难被吞并，导致二次再结晶不

完善． 采用薄板坯连铸连轧流程生产 Hi--B 钢可以减
少初次晶粒中{ 001} 组分，并促使高温退火过程中二
次再结晶发展更加完善． 铸坯在热轧过程经剪切变形
后所有稳定的最终位向都将产生{ 110 } ＜ 001 ＞位向
组分，而这种在热轧板次表层由于剪切变形形成的

{ 110} ＜ 001 ＞位向具有所谓的“继承效应”，是高温退
火过程中二次晶核的发源地．
2. 2 常化组织和织构分析
热轧板经常化后组织如图 4 所示． 与热轧板相

比，常化板表面脱碳层铁素体晶粒明显粗化，板中晶粒

尺寸达 20 ～ 100 μm． 过渡层和中心层的形变晶粒由于
在常化高温过程中发生再结晶而基本消失． 此外，由
于在常化升温过程中部分碳化物回溶，并与铁素体形

成一定量 γ相，在随后的冷却过程中再次相变使得晶
粒更加均匀化． 过渡层是晶界圆整尺寸为 10 ～ 80 μm
的细小铁素体晶粒; 而中心层铁素体较为粗大，约为

50 ～ 200 μm． 过渡层和中心层中仍存在沿轧向伸长的
细长珠光体，且比热轧板中更为清晰．

图 4 常化板组织图． ( a) 横断面金相组织; ( b) 纵断面金相组织
Fig． 4 Microstructures of the normalizing slab: ( a) microstructure
in the transverse direction; ( b) microstructure in the rolling direction

从图 5 常化板不同厚度处 ODF图分析得出，常化
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板不同厚度处织构类型和热轧板对应位置的织构类型

相似，仅织构强度存在差异． 常化板表层织构主要为
立方织构以及 α 纤维织构，织构强度较低，旋转立方
织构强度为 6. 632 级，具体织构类型主要有 { 110 }

＜ 001 ＞、{ 554 } ＜ 225 ＞、{ 332 } ＜ 113 ＞、{ 114 }
＜ 110 ＞、{ 115} ＜ 110 ＞和{ 001} ＜ 110 ＞ ． 1 /4 层和中
心层织构组分和表层基本相同，但 Goss 织构基本消
失，且各织构组分强度有所不同．

图 5 常化板不同厚度处 φ2 = 45° ODF． ( a) S = 0; ( b) S = 1 /4; ( c) S = 1 /2

Fig． 5 ODFs section of φ2 = 45° at different thicknesses in the normalizing slab: ( a) S = 0; ( b) S = 1 /4; ( c) S = 1 /2

常化板厚度 1 /4 处，主要织构有{ 114 } ＜ 110 ＞、
{ 115} ＜ 110 ＞、{ 001} ＜ 110 ＞和{ 332} ＜ 113 ＞ ． 厚度
中心处，仍然为较强的{ 001} ＜ 110 ＞形变织构． 从常
化板表层至中心处沿厚度方向的 { 111 }、{ 110 } 和
{ 001}织构总体变化趋势如图 6 中 γ、α 和 η取向线所
示，{ 110} ＜ 001 ＞ 织构强度随着厚度的增加而降低，
{ 001} ＜ 110 ＞织构强度先降低再升高． { 110} ＜ 001 ＞
织构强度变化主要是受热轧时表层剪切应力的作用，

使其在表层中 Goss织构强度较高，中心层剪切应力较
弱，不利于织构向 Goss 织构转变． 常化过程中，伴随
着回复再结晶，表层和次表层中都发生不同程度的再

结晶，由于板厚的影响，中心层再结晶不明显，{ 001 }
＜ 110 ＞织构在板的中心层强度最高． 从实验结果分
析来看，常化使热轧板发生回复再结晶，晶粒更加圆

整，但对纤维组织变化不大，通常不会引起织构的明显

变化，仅织构的锋锐程度略微降低［13］．

图 6 常化板不同厚度处 α、γ 和 η取向线
Fig． 6 Orientation distribution intensities along α，γ and η fibers at different thicknesses in the normalizing slab

2. 3 冷轧组织和织构分析
常化板经一次大压下率冷轧后的金相组织如图 7

所示． 常化后形成的粗大晶粒及其晶界沿轧向被拉长
形成鲜明的纤维组织，由于常化板表层晶粒较中心层

更为粗大，晶界较少，因此在冷轧板中心层的纤维组织

要比表层更为明显．
从图 8 冷轧板 ODF 图可以看出，冷轧板织构主

要为 α 纤维织构和 γ 纤维织构，如 { 111 } ＜ 110 ＞、

{ 111 } ＜ 011 ＞、{ 111 } ＜ 132 ＞ 以及 { 111 } ＜ 112 ＞
织构，在冷轧板中 { 111 } ＜ 110 ＞ 织构所占比例较
大，冷轧织构的本质主要取决于钢的晶体结构和流

变特性 ． 冷轧时通过滑移进行塑性形变，晶体在改
变形状的同时发生转动而改变位向，直到晶体不再

转动形成稳定的位向为止 ． 一次冷轧时，Goss 织构
绕 TD 轴［110］轴转动，形成 { 111 } ＜ uvw ＞ 形变带
及形变织构 ．
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图 7 冷轧板组织图
Fig． 7 Microstructure of the cold rolling slab

图 8 冷轧板 φ2 = 45° ODF图

Fig． 8 ODFs section of the cold rolling slab at φ2 = 45°

2. 4 脱碳退火组织和织构分析

实验室模拟薄板坯连铸连轧流程试制的高磁感取

向硅钢的脱碳退火试样金相组织如图 9 所示．

图 9 脱碳退火板金相组织
Fig． 9 Microstructure of the decarburizing annealing slab

一次冷轧板经 835 ℃脱碳退火后发生了回复和再
结晶现象并形成初次晶粒组织，为全铁素体晶粒． 晶
粒尺寸大多在 10 ～ 30 μm 之间，平均晶粒尺寸约为
21. 27 μm． 脱碳退火后主要以 γ 纤维织构为主，如图
10 所示，其织构强度为 8 级，主要包括{ 111} ＜ 112 ＞、
{ 111} ＜ 121 ＞和{ 111} ＜ 132 ＞织构，其取向成像图取
向分布同宏观织构一致． 从 ODF 图中可以看出脱碳
退火后，织构分布较为集中，{ 111 } ＜ 112 ＞ 织构强度
较冷轧板中{ 111} ＜ 112 ＞强度有所提高，低温时效处
理改善了板内位错组态，增加冷轧剪切带的形成，促进

了脱碳退火后{ 111} ＜ 112 ＞织构的增强． { 111} ＜ 112 ＞
织构组分的增多，有益于在二次再结晶过程中获得强

而锋锐的 Goss织构．

图 10 脱碳退火板 φ2 = 45° ODF图及晶粒取向图

Fig． 10 ODF map of the decarburizing annealing slab and orientation map of grains at φ2 = 45°

经脱碳退火后，由于各位向组分在冷轧板中的储

能不同，储能为 { 110} ＞ { 111} ＞ { 112} ＞ { 100} ，因此
退火时处于{ 111} ＜112 ＞形变带之间的{ 110} ＜001 ＞亚
晶粒优先聚集并形成位向准确 { 110 } ＜ 001 ＞ 初次晶
粒，而冷轧板中大量的{ 112} ＜ 110 ＞冷轧织构几乎全
部转变为 { 111 } ＜ 112 ＞ 或 { 554 } ＜ 225 ＞，少量的
{ 001}织构由于储能最低不易再结晶，因此仍保留在
初次晶粒中．
2. 5 高温退火组织和织构分析
图 11 为高温退火过程中所取样品的低倍组织图．

从图 11 中可以看出: 当温度在 950 ℃以前，样品未发

生二次再结晶，样品表面层颜色均一; 当温度升高至

1000 ℃时，样品边部中出现部分小晶粒，意味着二次
再结晶已经开始，但效果不明显; 当温度升高至

1010 ℃，钢中出现异常长大晶粒，二次再结晶发展迅
速;当温度升高至 1020 ～ 1030 ℃时，二次再结晶组织
已经发展完善．
对 700 ～ 1010 ℃高温退火过程的样品进行织构分

析． 图 12 为高温退火过程中不同温度点的 ODF图．
从图 12( a) ～ ( e ) 中可以看出，当温度在 800 ～

1000 ℃范围内，所取样品的织构类型继承了典型的初
次再结晶织构特点，主要为 γ 纤维织构，ODF 图中未
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图 11 高温退火过程中组织演变
Fig． 11 Macrostructural evolution during high-temperature annealing

图 12 高温退火过程中不同温度的 φ2 = 45° ODF图． ( a) 800 ℃ ; ( b) 850 ℃ ; ( c) 900 ℃ ; ( d) 950 ℃ ; ( e) 1000 ℃ ; ( f) 1010 ℃

Fig． 12 ODF maps of Hi--B steel at different temperatures at φ2 = 45° during high-temperature annealing: ( a) 800 ℃ ; ( b) 850 ℃ ; ( c) 900 ℃ ;

( d) 950 ℃ ; ( e) 1000 ℃ ; ( f) 1010 ℃

出现高斯织构，且织构主要组分基本相同． 温度在
950 ℃以前，样品未发生二次再结晶，微观组织形貌未
发生变化，织构依旧保留其再结晶织构特点． 当温度

升至 1000 ℃时，在样品边部中出现部分晶粒，样品中
出现 Goss组分，但强度较弱，强度为 16. 045． 当温度
达到 1010 ℃时，抑制剂抑制能力急剧降低，钢中 Goss
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晶粒吞噬其他晶粒，发生异常长大，织构强度进一步增

强，达到了 61. 779． 经检测，实验室模拟薄板坯连铸连
轧工艺生产的 Hi--B 钢成品的磁感为 1. 915 T，铁损为
1. 067 W·kg －1 ．

3 结论

( 1) 热轧板沿板厚方向组织和织构存在不均匀
性． 常化板表面脱碳层铁素体晶粒明显粗化，织构基
本继承了热轧板相应的织构类型．
( 2) 一次冷轧后，冷轧组织为条带状纤维组织，冷

轧板织构主要为 α 纤维织构和 γ 纤维织构，有{ 111 }
＜ 110 ＞、{ 111} ＜ 132 ＞以及{ 111} ＜ 112 ＞ ．
( 3) 脱碳退火后，晶粒尺寸大多在 10 ～ 30 μm 之

间，平均晶粒尺寸约为 21. 27 μm，脱碳退火后织构分
布较为集中，主要有 { 111 } ＜ 112 ＞、{ 111 } ＜ 121 ＞、
{ 111} ＜ 132 ＞等织构．
( 4) 950℃以前样品未发生二次再结晶，温度升高

至 1000 ℃时二次再结晶开始，1010 ℃时高斯晶粒进
一步长大，Goss织构强度达到了 61. 779． 成品磁感达
到 1. 915 T，铁损为 1. 067 W·kg －1 ．
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