38 2 1241247 2016 2
Chinese Journal of Engineering Vol.38 No.2: 241247 February 2016
DOI: 10.13374/j. issn2095—9389.2016.02.013; http: //journals. ustb. edu. cn

MR EE LS T2 Hi- B 894140 M 2084

100081
X E-mail: whjchina@ yeah. net

( TSCR) (Hi—B ) .
Hi—B

a Y
) 1000 °C 1010°C
61.779. 1.915T 1.067 Wekg ™.
; (TSCR) ; ;
TG142. 1

Microstructure and texture of Hi—B steel produced by TSCR process
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ABSTRACT The microstructure and texture evolution of Hi—B steel produced by thin slab casting and rolling ( TSCR) process in
the laboratory was studied by metalloscopy and scanning electron microscopy. It was found that the microstructure and texture of the hot
rolling slab of Hi—B steel which was manufactured by simulated TSCR process in the laboratory was inhomogeneous along the thick—
ness direction. Ferrite grains in the surface decarbonization layer of the normalizing slab obviously coarsen; moreover the texture of
the normalizing slab inherited the texture type of the hot rolling slab with only a difference in texture density. After cold rolling with
big reduction rate the coarse grains and grain boundaries were stretched to be fibrous bands in the rolling direction and the « fiber
texture and the v fiber texture were the main texture style. With the decarburizing annealing carrying out the recovery and recrystalli—
zation of the cold rolling slab occurred primary recrystallization grains formed and the texture was more centrally distributed. When
the temperature increased to 1000 °C  secondary recrystallization appeared; at 1010 °C the Goss grains grew up and the Goss texture
intensity reached to 61.779. By testing the products had a magnetic induction of 1. 915 T and an iron loss of 1. 0671 Wekg ™.
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Fig.9 Microstructure of the decarburizing annealing slab
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Fig.11 Macrostructural evolution during high-temperature annealing
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