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Fatigue behavior of powder metallurgy superalloy FGH97

NAI Qidiang™ DONG Jian=in ZHANG Mai-cang ZHENG Lei YAOQ Zhi-hao

School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 China
B Corresponding author E-mail: naiqiliang@ 126. com

ABSTRACT The fatigue crack growth rates of powder metallurgy ( P/M) superalloy FGH97 with different grain sizes v~ phase sizes
and Hf contents were measured at a 650 °C high temperature condition and compared with those of FGH95 and FGH96 alloys. The
fatigue fracture behavior characteristic of FGH97 alloy in each stage was analyzed by the quantitative analysis method. It is found that
FGH97 alloy with coarser grains has a lower fatigue crack growth rate. Reasonable match of secondary and tertiary y* phases and Hf
addition can get a higher fatigue life. Compared with FGH95 and FGH96 alloys FGH97 alloy has the highest fatigue cack intiation
resistance and exihibits the lowest fatigue crack propagation rate at high temperature.
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Table 1 Chemical composition of FGH97 alloy %
Cr Co Mo W Al Ti Nb Zr B C Hf Ni
9.02 15. 69 3.76 4.96 4.91 1.74 2.59 0.017 0.012 0. 045 0.30
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Fig.3 Microstructures of two FGH97 alloy specimens with different grain sizes: ( a) fine grains; ('b) coarse grains
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Fig.4 Lifetime and fatigue crack growth rate curves of two FGH97 alloy specimens with different grain sizes: (a) da/dN-AK; (b) a-N
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Fig.5 Microstructures of FGHI7 alloy specimens with different vy~ phase sizes: (a) FGH97-A; (b) FGH97-B
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Fig.6 Lifetime and fatigue crack growth rate curves of FGH97 alloy specimens with different y* phase sizes: (a) da/dN—AK; (b) a—N
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Fig.7 Lifetime and fatigue crack growth rate curves of FGH97 alloy with different Hf contents: (a) da/dN-AK; (b) a-N
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Fig.8 Microstructures of three alloys: (a) FGH95; (b) FGH96; (c) FGH97
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Fig.9 Lifetime and fatigue crack growth rate curves of three alloys under pure fatigue: (a) da/dN -AK; (b) a-N
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Fig.10 Lifetime and fatigue crack growth rate curves of three alloys with a 90's hold time: (a) da/dN-AK; (b) a-N
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Fig.11 Comparison of fatigue fracture in different stages: (a) pure fatigue; (b) 90s hold time
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Fig.13 Fatigue fracture characteristics of FGH97 alloy with different Hf contents: (a) da/dN -a; (b) comparison of different stages
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Fig.14  Fracture morphology of FGH97 alloy: (a) 0% Hf; (b) 0.15% Hf; (c) 0.60% Hf; (d) 0.90% Hf
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