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粉末高温合金 FGH97 疲劳裂纹扩展行为
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摘 要 测定不同晶粒尺寸、γ'相以及不同 Hf含量的粉末高温合金 FGH97 在 650 ℃高温条件下的疲劳裂纹扩展速率，并将
其与 FGH95 和 FGH96 两代粉末合金的疲劳裂纹扩展速率进行对比． 用定量分析的方法对 FGH97 合金在疲劳断裂各个阶段
的行为特征进行分析． 较大晶粒尺寸的 FGH97 合金具有较低的裂纹扩展速率，合理的二次和三次 γ'相匹配析出，可以获得较
高的疲劳寿命; Hf元素的添加使合金的整体疲劳寿命增大; FGH97 合金与 FGH95 和 FGH96 相比，具有较高的疲劳裂纹萌生
抗力，更低的高温疲劳裂纹扩展速率．
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目前，高推重比航空发动机的发展对高温合金的

性能要求越来越高． 粉末高温合金由于具有较高的高
温强度、良好的抗疲劳性能、低的裂纹扩展速率、较好
的抗氧化性能及高温使用时良好的组织稳定性等综合

性能，成为制造先进航空发动机涡轮盘、压气机盘、涡
轮轴、涡轮盘挡板等零部件的首选材料［1--2］．
我国粉末高温合金的研究起步于 20 世纪 70 年

代后期，经过几十年的发展，研制出以 FGH95 为代表
的第一代粉末高温合金，FGH96 为代表的第二代粉
末高温合金，并随后研发了 FGH97 等一系列粉末高

温合金． FGH95 合金采用等离子旋转电极工艺
( PＲEP) 制粉 +热等静压 ( HIP) 直接成形，使用温度
为 650 ℃，γ'相数量高达 50% ～ 55%，属于高强型粉
末高温合金，但其损伤容限较低． 在此基础上研发了
第二代高损伤容限型镍基粉末高温合金 FGH96，采
用等离子旋转电极工艺 ( PＲEP ) 制粉 + 热等静压
( HIP) 制坯 + 锻造成形工艺，优化了成分和制造工
艺，γ'相数量为 35%左右，强度低于 FGH95． FGH97
为我国研制的与 EP741NP 牌号相近的合金［3］，采用
等离子旋转电极工艺( PＲEP) 制粉 +热等静压 ( HIP)
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直接成形，优化了成分设计，使合金在 650 ～ 750 ℃具
有优异的性能［4］． 疲劳性能作为粉末高温合金服役
过程中一项重要指标，长期以来都是一个备受关注

的重要内容． FGH95、FGH96 和 FGH97 合金的制造
工艺、组织成分等存在差异，因此造成三种合金具有
不同的疲劳特征． 目前，关于 FGH95、FGH96 合金疲
劳性能的研究已有一些报道，而对 FGH97 疲劳特征
的研究报道却甚少． 本文通过对不同晶粒尺寸、γ'相
以及不同 Hf含量的 FGH97 合金，在疲劳及保载 90 s
两种不同状态下进行 650 ℃高温疲劳裂纹扩展速率

试验，并与 FGH95 和 FGH96 合金的疲劳性能进行对
比，通过定量对比分析揭示了 FGH97 合金的疲劳行
为特征，并对疲劳过程进行深入的分析与探讨，为

FGH97 合金的设计研究和发展提供一些思路和
看法．

1 实验材料及方法

本实验所采用的镍基粉末高温合金 FGH97 标准
化学成分如表 1 所示． 具体的热处理工艺: 1200 ℃，
8 h炉冷 + 1170 ℃，空冷 + 870 ℃，24 h空冷．

表 1 FGH97 合金的化学成分( 质量分数)

Table 1 Chemical composition of FGH97 alloy %

Cr Co Mo W Al Ti Nb Zr B C Hf Ni

9. 02 15. 69 3. 76 4. 96 4. 91 1. 74 2. 59 0. 017 0. 012 0. 045 0. 30 余量

为研究晶粒尺寸对 FGH97 合金疲劳裂纹扩展行
为的影响，在组分相同的条件下，延长一个试样的固溶

时间到 10 h，之后采用相同的热处理工艺，使其具有不
同的晶粒尺寸，并保证析出相等其他条件变化不大;为

研究 γ'相对 FGH97 合金疲劳裂纹扩展行为的影响，在
900 ～ 700 ℃进行不同时间的时效处理，获得不同的 γ'
相析出特征． 为研究 Hf 元素对 FGH97 合金低周疲劳
行为的影响，在 FGH97 合金标准成分的基础上添加
0%、0. 15%、0. 6%和 0. 9%的 4 种不同质量分数的 Hf
进行实验． 将机械抛光后的试样进行化学侵蚀以观察
其晶粒组织，侵蚀剂为 5 g CuCl2 + 100 mL HCl + 100 mL
C2H5OH，试样在溶剂中浸蚀 30 ～ 90 s． 对试样进行电
解抛光 +电解侵蚀以观察其强化相形貌． 电解抛光制
度:电压 30 V 下在 20% H2SO4 + CH3OH抛光液中浸
蚀 5 ～ 10 s． 电解侵蚀制度: 电压 5 V 下在 15 g CrO3 +
10 mL H2SO4 + 150 mL H3PO4侵蚀液中浸蚀 3 ～ 6 s．
疲劳裂纹扩展试验在高温裂纹扩展试验机上进

行，试样按 JB /T8189—1999 并参照 ASTM-E647—81
制成标准紧凑拉伸试样( CT) 试样，试样尺寸如图 1 所
示． 试验前，用钼丝切割出缺口．
为接近实际服役环境，设定实验温度为 650 ℃，应

力比 Ｒ 设为 0. 05，最大载荷为 4230 N，在空气环境进
行试验，加载波形图如图 2 所示． 采用直流电位法测
量裂纹长度，本试验中 FGH97 合金裂纹长度变化 Δa
与电位变化 ΔV关系为 Δa = 3. 335ΔV． 利用扫描电子
显微镜观察其微观组织变化及断口形貌．

2 实验结果
2. 1 晶粒尺寸的影响
两种不同晶粒尺寸 FGH97 合金的组织如图 3 所

示，细晶试样平均晶粒尺寸约为 100 μm，粗晶试样平
均晶粒尺寸约为 170 μm． 图 4 为两种试样在 650 ℃空

图 1 CT疲劳裂纹扩展标准试样( 单位: mm)
Fig． 1 Compact tension specimen for crack propagation test

图 2 恒载荷载荷谱． ( a) 疲劳; ( b) 保载 90 s
Fig． 2 Load spectra under constant load: ( a) fatigue; ( b) holding
for 90 s

气环境中，疲劳加载下的 da /dN--Δk曲线( da /dN为裂
纹扩展速率，Δk为应力强度因子范围) 和 a--N曲线( a
为裂纹长度，N为循环加载周期) ． 由图 4 ( a) 可知，无
论是在疲劳裂纹扩展的萌生阶段还是稳定扩展阶段，

粗晶试样较细晶试样都有着较低的疲劳裂纹扩展速

·942·
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率． 由 a--N曲线可知，细晶试样疲劳裂纹断裂的循环
周次较粗晶试样的循环周次少，疲劳寿命短． 另外，从

图 4( b) 中可以看出细晶试样的裂纹萌生周次较粗晶
试样多，说明细晶组织的裂纹萌生抗力高．

图 3 两种不同晶粒尺寸的 FGH97 合金试样的微观组织． ( a) 细晶试样; ( b) 粗晶试样
Fig． 3 Microstructures of two FGH97 alloy specimens with different grain sizes: ( a) fine grains; ( b) coarse grains

图 4 两种不同晶粒尺寸的 FGH97 合金试样的疲劳寿命和裂纹扩展速率曲线． ( a) da /dN － ΔK曲线; ( b) a － N曲线
Fig． 4 Lifetime and fatigue crack growth rate curves of two FGH97 alloy specimens with different grain sizes: ( a) da /dN － ΔK; ( b) a － N

2. 2 γ'相的影响
选取 A、B 两个试样，进行相同的固溶处理，改变

时效时间，使其 γ'相发生改变，晶粒尺寸保持不变，其
组织形貌如图 5 所示． 两者的主要差别在于强化相的
尺寸分布． 在同样的放大倍数下，A 试样中 γ'相尺寸
分布在 100 ～ 200 nm之间，且由于尺寸细小，分布极为

紧密． B 中的 γ'相尺寸大约是 A 的 2 ～ 3 倍，约为
300 ～ 400 nm左右，主要呈方块状，比较均匀有序地排
列，空隙之间还有细小的三次 γ'相补充析出．
试验温度接近于使用条件，为 650 ℃，应力比 Ｒ =

0. 05，初始应力强度因子 ΔK = 30 MPa·m1/2 ． 试验后得
到的 da /dN--ΔK和 a--N曲线如图 6 所示．

图 5 两种不同 γ'相尺寸的 FGH97 合金试样的微观组织形貌． ( a) FGH97-A; ( b) FGH97-B
Fig． 5 Microstructures of FGH97 alloy specimens with different γ' phase sizes: ( a) FGH97-A; ( b) FGH97-B

·052·
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图 6 两种不同 γ'相尺寸的 FGH97 合金试样的疲劳寿命和裂纹扩展速率曲线． ( a) da /dN--ΔK; ( b) a--N

Fig． 6 Lifetime and fatigue crack growth rate curves of FGH97 alloy specimens with different γ' phase sizes: ( a) da /dN--ΔK; ( b) a--N

从图 6 ( a) 可知，A 试样初始扩展速率较高，而 B
试样裂纹扩展速率的增速较快． B 试样在相对较低的
应力强度下，疲劳裂纹进入瞬断区扩展． 由 a--N 曲线
可知，B试样的启裂周次较高． 从两个试样的曲线对
比可知，对于 FGH97 合金，γ'相尺寸的增大、三次的析
出以及 γ'相有序的排列有利于裂纹萌生抗力的提高，
因此 B试样的启裂周次明显高于 A试样，但是 B 所承
受的应力强度因子范围比 A要窄．
2. 3 Hf含量影响
不同 Hf含量的试样疲劳裂纹扩展速率曲线和循

环周次曲线如图 7 所示． 随着 Hf 的质量分数从 0 增
加到 0. 60%，试样的疲劳裂纹扩展速率降低． 当 Hf 质
量分数达到 0. 90%时，试样疲劳裂纹的扩展速率增
加． 图 7( b) 为 FGH97 合金试样的疲劳寿命曲线． 由
图 7 可以看出，随 Hf 含量的增加，试样的疲劳寿命整
体呈逐渐增大趋势，Hf 质量分数在 0 ～ 0. 6%时，疲劳
裂纹的启裂周次相当，当 Hf 质量分数提高到 0. 9%
时，启裂周次较高．

图 7 不同 Hf含量 FGH97 合金疲劳寿命和裂纹扩展速率曲线． ( a) da /dN － ΔK; ( b) a － N
Fig． 7 Lifetime and fatigue crack growth rate curves of FGH97 alloy with different Hf contents: ( a) da /dN － ΔK; ( b) a － N

3 讨论

3. 1 FGH97 合金疲劳特性
为了进一步研究 FGH97 合金疲劳裂纹扩展行为

特征，将第一代、第二代粉末高温合金 FGH95 和
FGH96 合金的疲劳行为与其进行对比． FGH95 合金采
用等离子旋转电极制粉 +热等静压成形工艺，FGH96
采用等离子旋转电极制粉 +热等静压制坯 +锻造成形
工艺，FGH97 合金的制造工艺则与 FGH95 合金相近．
在成分设计上，FGH97 合金与 FGH95、FGH96 合金相
比降低了 Cr含量，提高了 Co含量，使得合金的高温强

度得到一定的提高，优化了 Al /Ti 比并添加了一定量
的 Hf元素，Hf元素增加了 γ'相含量并且适量的降低
了 γ /γ'晶格错配度，有利于提高材料的高温持久寿
命，并且析出的晶界碳化物数量增多，提高了晶界

强度［5
--11］．
从微观组织( 图 8 ) 上来看，FGH95 合金晶界和晶

内具有粗大的一次 γ'相． 这是由于 FGH95 采用亚固
溶处理，γ'相没有完全回溶，在随后的热处理中仍残留
晶界和晶内，并且具有较大尺寸． FGH96 和 FGH97 合
金采用过固溶处理，γ'相完全回溶，基体上没有粗大的
一次 γ'相存在． FGH96 和 FGH97 全金中细小的三次

·152·
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γ'相弥散分布在二次 γ'相之间，这种二次和三次 γ'相
的匹配析出提高了材料疲劳裂纹扩展的抗力． 另外，

FGH97 合金 γ'的析出数量约 60%较 FGH96 合金我
( 35%左右) 多，提高了合金的强度．

图 8 高温合金的微观组织形貌． ( a) FGH95; ( b) FGH96; ( c) FGH97
Fig． 8 Microstructures of three alloys: ( a) FGH95; ( b) FGH96; ( c) FGH97

对镍基高温合金 FGH95、FGH96、FGH97 在 650 ℃
下进行疲劳和保载 90 s 条件下的裂纹扩展速率试验，
得到的 da /dN － ΔK曲线和 a － N曲线( 如图 9 和 10 所
示) ． 疲劳加载下，FGH95 合金的裂纹扩展速率最高，
FGH97 与 FGH96 合金裂纹扩展速率相当，但 FGH97
合金的启裂周次较 FGH96 高，因此呈现出最高的疲劳
寿命． 在疲劳－蠕变交互作用下( 保载 90 s) ，各种合金

的疲劳裂纹扩展速率呈明显增大的趋势． FGH95 依然
呈现出最高的裂纹扩展速率，FGH97 在低的强度因子
范围 ΔK裂纹扩展速率与 FGH96 相近，随着 ΔK增加，
FGH97 的裂纹扩展速率则显现出较低的扩展速率，使
得应力循环周次增加，大幅度地提高了疲劳寿命，加上

启裂周次远远高于 FGH96 和 FGH95 合金，FGH97 合
金的依旧呈现出最高的疲劳寿命．

图 9 纯疲劳下三种合金疲劳寿命和裂纹扩展速率曲线． ( a) da /dN － ΔK; ( b) a － N
Fig． 9 Lifetime and fatigue crack growth rate curves of three alloys under pure fatigue: ( a) da /dN － ΔK; ( b) a － N

图 10 保载 90 s下疲劳寿命和裂纹扩展速率曲线． ( a) da /dN － ΔK; ( b) a － N
Fig． 10 Lifetime and fatigue crack growth rate curves of three alloys with a 90 s hold time: ( a) da /dN － ΔK; ( b) a － N

·252·
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为了更深入研究 FGH97 的疲劳特性，利用 Zhang
等［12］的方法将疲劳过程分成瞬断区、扩展区和萌生区
( 本文将文献中提到的孕育期和萌生区合并为萌生

区) 三个阶段分别与 FGH95 和 FGH96 合金进行对比
分析． 图 11 为三种粉末高温合金在疲劳和保载 90 s
两种不同循环载荷作用下的疲劳裂纹萌生、扩展和瞬
断三个阶段的周次对比图． 可以看出，在疲劳作用下，
FGH97 疲劳裂纹萌生期的周次较 FGH95 和 FGH96
高，甚至超过 FGH95 合金的整个疲劳寿命，并且在整
个疲劳寿命中所占比例较高． FGH97 的疲劳裂纹萌生

抗力与 FGH95 和 FGH96 相比较高． 扩展阶段 FGH97
和 FGH96 的应力循环周次均比 FGH95 高，高的裂纹
扩展抗力可以避免合金快速进瞬断区而降低其使用寿

命． 由于萌生期和扩展期所占疲劳寿命的比例增大，
导致瞬断期的周次减小，提高了材料的疲劳性能． 在
保载 90 s下，三种合金疲劳裂纹扩展相互之间的关系
与疲劳下的关系类似． 与疲劳条件下相比，合金的裂
纹扩展速率增大，合金的疲劳寿命均有不同程度的

降低．

图 11 疲劳断裂各阶段对比． ( a) 疲劳; ( b) 保载 90 s
Fig． 11 Comparison of fatigue fracture in different stages: ( a) pure fatigue; ( b) 90 s hold time

3. 2 组织特征对 FGH97 疲劳行为的影响

晶粒尺寸是影响高温合金疲劳裂纹的扩展速率

的重要原因之一． 从实验数据可知，晶粒尺寸大小对
于 FGH97 合金疲劳裂纹的影响贯穿着整个断裂过
程． 在裂纹的萌生阶段，细晶组织具有较高的强度，
阻碍了由于循环应力引起的位错运动，使裂纹难以

形核，提高了裂纹的萌生周次［13］． 另外，高温合金层
错能较低，晶粒越小，裂纹传播的第一阶段的阻力就

越大，导致第一阶段的循环周次就越高． 在裂纹扩展
阶段，大晶粒可以增加反复滑移的平面滑移特征，阻

碍裂纹的扩展，并且在循环应力的作用下，断裂表

面粗糙度较高，引起裂纹提起闭合，导致裂纹扩展

速率下降 ; 另一方面，细晶材料由于具有较多的晶

界暴露在空气中，在应力诱导下加快氧沿晶界扩

展，加重晶界氧化，弱化晶界，从而增加了疲劳裂纹

扩展速率［14］．
另外，对于 FGH97 合金来说，无论是粗晶还是细

晶组织，裂纹萌生的循环周次在整个断裂周次中占有

较高的比重． 以往的研究更多局限在晶粒度对裂纹扩
展速率的研究上． 因此，我们在研究晶粒尺寸对
FGH97 合金疲劳裂纹的影响时，不能仅仅关注其对裂
纹扩展速率的影响，还应结合疲劳裂纹扩展各个阶段

综合研究，协调各个阶级循环周次从而极大地提高合

金的疲劳寿命．
不同的热处理方式及化学成分的改变可使

FGH97 中的 γ'相具有不同形态、尺寸及分布［15］，其对
FGH97 合金疲劳裂纹扩展速率有着较大的影响． 从
图 6 可以看出具有较大强化相尺寸的试样裂纹扩展速
率整体较低． 为进一步研究不同 γ'相特征对疲劳裂纹
扩展各阶段有何影响，转换数据得到 da /dN--a曲线如
图 12 所示．

图 12 不同 γ'相特征 da /dN--a曲线

Fig． 12 da /dN--a curves of FGH97 alloy different γ' features

由 FGH97 合金的 da /dN--a 曲线 ( 图 12 ) 可以得
到两种组织特征下疲劳裂纹进入瞬断区时裂纹扩展
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速率快速增大的拐点，其对应着疲劳裂纹进入瞬断

区时的长度，由此可知 A 试样进入瞬断区时的裂纹
长度小于 B，在一定程度上反映 A 的疲劳裂纹扩展
抗力较低． 裂纹一旦进入瞬断区，扩展速率就会快速
增大，十分危险． 因此为了使用安全，更应关注于裂
纹扩展的前两个阶段，尤其是萌生区，FGH97 的裂纹
萌生比例占整个寿命的 80%以上，相比之下 B 试样
具有更长的萌生周期，约 86. 4%，这是安全使用所追
求的，尽可能延长裂纹的萌生期，一旦进入扩展期，

速率加快，材料很快失效． 对于裂纹尖端的应力强度
因子，两者的初始值一样 ( ΔK = 30 ) ，但各个阶段 B
试样的变化范围较小，说明 B 试样的组织能缓解裂
纹尖端的应力集中，从而提高材料的疲劳寿命． 综上

所述，B 试样的 γ'相特征提高了疲劳裂纹萌生的
抗力．
3. 3 Hf元素对 FGH97 疲劳行为的影响
图 13 为不同 Hf含量合金疲劳特征对比图． 由图

13 可以看出，随着 Hf含量的增加，合金整体疲劳寿命
延长，疲劳裂纹的进入瞬断区时的裂纹长度呈增加的

趋势，并且使得疲劳裂纹扩展区的寿命呈增加趋势．
当 Hf质量分数达到 0. 90%时，试样临界裂纹尺寸骤
降至最底，但极大地增加了萌生区的寿命，萌生区的周

期占整个疲劳寿命的 84. 9% ． 除 0. 9% Hf 的合金外，
其他试样随 Hf含量的增加，扩展区的比率增大，可见
适当 Hf元素的添加，可以延长扩展区在整体寿命中的
比率．

图 13 不同 Hf含量 FGH97 疲劳断裂特征． ( a) da /dN － a; ( b) 各阶段对比
Fig． 13 Fatigue fracture characteristics of FGH97 alloy with different Hf contents: ( a) da /dN － a; ( b) comparison of different stages

图 14 是 4 种不同 Hf 含量的 FGH97 合金在扩展
阶段的断口形貌． 从图 14 可以看出: 当 Hf 质量分数
w( Hf) = 0%时，合金断口呈现明显的穿晶和沿晶混合
断裂的模式，并且在断口边缘处伴随较多的二次裂纹;

当 Hf的质量分数在 0% ～ 0. 6%时，随着 Hf 含量的增
多，断口表面穿晶解理断裂的比例增大，沿晶断裂与

穿晶断裂相比对裂纹扩展阻碍较小，裂纹扩展速率

较快，所以随着 Hf 含量的增加，裂纹扩展速率呈逐
渐降低的趋势; 当 Hf 质量分数达到 0. 90%时，断口
上的二次裂纹较少，晶界强度高，因此其对疲劳裂纹

的萌生具有较高的抗力，试样的断口呈现明显的沿

晶断裂为主的特征，这种断裂方式又导致裂纹扩展

速率加速．
本文通过研究影响 FGH97 合金疲劳寿命的三个

重要因素———晶粒尺寸、γ'相及 Hf 含量，发现各因素
对合金在疲劳断裂过程中的影响是错综复杂的． 大的
晶粒尺寸降低了疲劳裂纹扩展速率，但也降低了裂纹

萌生的抗力． 如果晶粒尺寸过小，虽提高了循环应力
下裂纹萌生的周次，但也促进了裂纹的扩展速率导致

整体寿命下降，晶粒尺寸过大，必然导致抗萌生能力的

降低，亦会使疲劳寿命下降． 因此在实际生产中因选
取合适的晶粒尺寸，兼顾其对裂纹萌生和扩展的抗力，

调整两者之间的关联性，进而极大地提高合金的使用

寿命． 同样对 γ'相来说，其尺寸大小，分布情况对疲劳
断裂过程的影响也各不相同，合适尺寸、规则排列的二
次 γ'相并且伴有细小的三次 γ'相虽然增大了裂纹在
瞬断区的扩展速度，但大幅度地增加裂纹萌生的抗力，

并且降低了疲劳裂纹的扩展速率，而这种对疲劳寿命

的有益作用远远高于其对瞬断区的有害作用． Hf元素
的添加，整体上提升了合金的疲劳寿命，尤其是在疲劳

裂纹的扩展区． 通过三种合金疲劳行为的对比发现，
在粉末高温合金中，疲劳裂纹的萌生寿命在整个疲劳

寿命中占据比较大的比例，因此提高粉末高温合金的

裂纹萌生抗力对增加合金的疲劳寿命至关重要．
FGH97 与 FGH96、FGH95 相比，大幅度提高了裂纹在
循环应力下的萌生周次并降低了瞬断区在疲劳断裂过

程中的比例;在提高裂纹萌生周次的前提下，适当的提

高合金扩展区的比例，可以使合金呈现出较高的疲劳

寿命．

4 结论

( 1) 粉末高温合金 FGH97 较 FGH95 和 FGH96 具
有较高的疲劳裂纹萌生抗力，更低的高温疲劳裂纹扩

展速率，并且稳定扩展阶段占疲劳寿命的比例高．
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图 14 FGH97 合金断口形貌． ( a) 0% Hf; ( b) 0. 15% Hf; ( c) 0. 60% Hf; ( d) 0. 90% Hf
Fig． 14 Fracture morphology of FGH97 alloy: ( a) 0% Hf; ( b) 0. 15% Hf; ( c) 0. 60% Hf; ( d) 0. 90% Hf

( 2) 对于 FGH97 合金，细晶组织可以提高其对裂
纹萌生的抗力，粗晶组织则有利于降低其在稳定扩展

阶段的裂纹扩展速率，二次 γ'相有序的排列并与三次
γ'相匹配析出有利于裂纹萌生抗力的提高．
( 3) 随着 Hf含量的增加，疲劳裂纹在扩展区寿命

增加，合金的疲劳寿命延长． 当 Hf 含量填到到一定量
时，会降低材料对疲劳裂纹扩展的抗力，但也极大地增

加了裂纹萌生的抗力．
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