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Seepage model and productivity prediction of fractured wells in shale gas reservoirs

with discontinuous micro+ractures
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ABSTRACT A dual-porosity medium with micro-fractured spherical matrix blocks was achieved on the basis of the structure charac—
teristics of nano-micro pores and micro-ractures in shale gas reservoirs. The Laplace space solution of the dimensionless bottom hole
pressure of fractured well production was obtained in consideration of the seepage diffusion and desorption mechanism of shale gas and
applying the Laplace transform and the Stehfest numerical inversion. Type curves of dimensionless production were plotted and the in—
fluencing factors of the type curves were identified. The results show that the matrix surface improves gas transfer from the matrix medi-
um to the fracture network due to matrix micro fractures. Increasing the permeability and length of micro fractures accelerate the pro—
ductivity significantly.
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