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含微裂缝页岩储层渗流模型及压裂井产能
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摘 要 根据页岩气储层纳微米孔隙和微裂缝结构特征，建立含微裂缝表面层基质--裂缝双重介质球形模型． 综合考虑扩散
和滑移对页岩气产能的影响，利用 Langmuir 等温吸附方程描述页岩气的解吸吸附，通过 Laplace变换和 Stehfest数值反演，得
到页岩气藏压裂井定产和定压条件下的井底流压和产量的解析解，并进行页岩气藏压裂井产能预测及影响因素分析． 结果
表明:微裂缝是页岩气基质微观孔隙和宏观裂缝运移的主要渗流通道;微裂缝的渗透率越大和长度越长，页岩气井产量越大．
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页岩气储层基质与微裂缝结构复杂，基质主要为

纳微米孔隙，且含有大量天然诱导微裂缝． 通过扫描
电镜观察，无机质中微裂缝部分不连续，有机质中微裂

缝多为平行且呈簇状分布，并由构造微裂缝连接贯

通［1］． 近来研究表明，微裂缝可能是沟通基质微观孔
隙和宏观裂缝网络的主要渗流通道［2］． 因此，微裂缝
对页岩气藏产能预测影响很大，原有的双重孔隙模型

已不再适用页岩储层，必须建立考虑页岩气纳微米孔

隙流动和微裂缝特征的新渗流数学模型．

对于页岩储层多尺度流动方面，Javadpour 等［3］和
Wang等［4］指出气体在人工裂缝中为达西流动，为页岩
气非线性渗流理论的建立奠定了基础; 朱维耀等［5］和

Deng 等［6］建立了考虑扩散和滑移的纳微米级孔隙气
体流动模型，并指出气体在天然微裂缝及人工裂缝中

为达西流动，本文中采用此模型作为纳微米孔隙中气

体流动模型．
在页岩气多重介质渗流方面，国外部分学者［7］提

出应采用基质--微裂缝--大裂缝三重介质模型来描述
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页岩气藏中气体的宏观流动和运移． Dehghanpour 和
Shirdel［8］扩展了 Warren和 Ｒoot［9］提出的拟稳态模型
和 Ozkan等［10］提出的瞬时双重介质模型． 朱琴等［11］

在 Dehghanpour提出的三重介质模型基础上，研究微
裂缝和有机质中解吸机理对非稳态压力动态及其产

能的影响． 目前，对考虑微裂缝的页岩气藏渗流模型
研究仍处于起步阶段，现有的模型均假设微裂缝均

匀连续分布，渗流方程采用达西定律，并未考虑页岩

储层纳微米孔隙内气体扩散、滑移及有机质孔隙中
气体解吸对渗流产生的综合影响，存在明显不足． 因
此，亟需形成一个新的流动理论，建立含微裂缝的页

岩气藏多重介质渗流模型，建立页岩气藏多尺度压

裂井产能模型，为页岩气的开发理论的形成奠定

基础．

为此，本文将基于 Apaydin 等［12］建立的基质--裂
缝双重介质球形模型，考虑纳微米孔隙的非线性渗流

特征，将连续微裂缝的影响范围看作页岩基质表面层，

在基质--微裂缝双重介质模型的基础上加入微裂缝表
面层作为沟通基质与人工裂缝网络的通道，建立含微

裂缝表面层基质--裂缝双重介质球形模型，并进行页
岩气藏压裂水平井产能预测及影响因素分析．

1 页岩气多尺度流动规律

页岩气藏属于“自生自储”气藏，天然气主要以吸
附态、游离态和溶解态 3 种形式存在，吸附态和游离态
占主体，其中吸附态天然气含量在 20% ～ 85% ． 页岩
气在储层中的流动可描述为图 1 所示的解吸、滑移扩
散、渗流等多种流动方式: ①在压降作用下，页岩气在
页岩基质表面发生解吸;②纳微米孔隙中分子与孔壁
发生碰撞滑移扩散; ③页岩气在微裂缝--裂缝网络中
流动． 多尺度流动分为四大流态: 连续流( 达西流、非
达西流和管流) 、滑移流、过渡流和自由分子流． 其流
动规律表现为存在解吸、扩散、滑移、渗流的多尺度特
性和非线性流动特征．

图 1 页岩气流动示意图． ( a) 基质表面解吸; ( b) 纳微米孔隙中流动; ( c) 微裂缝--裂缝网络中流动
Fig． 1 Diagram of shale gas flow: ( a) desorption on the matrix surface; ( b) flow in nano-micro pores; ( c) flow in fracture networks

1. 1 页岩气多尺度流动模型
页岩储层中存在大量的纳微米孔隙，孔直径主要

分布在 2 ～ 50 nm． 由于储层渗透率极低，气体流动已
偏离达西定律，扩散和滑移作用对多孔介质内气体流

动影响增加．
Beskok 等［13--14］得出在连续介质、滑脱、对流和不

同分子类型下渗透率变化表达式，获得普遍适用于连

续流区、滑移流区、过渡流区和自由分子流区的理想气
体流动方程． 朱维耀等［5］和 Deng 等［6］基于 Beskok--
Karniadakis 模型，对纳微米级孔隙内的气体流动方程
进行简化和推广，建立了适用于不同流态的纳微米级

孔隙内气体流动数学模型:

v = －
k0 (μ

1 + 3πa
16k0

μDk ) (p
dp
d )x ． ( 1)

式中: v 为气相的渗流速度，m·s －1 ; k0为绝对渗透率，
μm2 ; μ为气体黏度，Pa·s; Dk为气体扩散系数，m

2·s －1 ;

p为压力，Pa; α为稀疏因子，α = 1. 34．
页岩储层天然裂缝网络结构复杂，开度主要分布

在 10 ～ 20 μm，连续贯通的微裂缝的存在提升了比表
面积和富含有机物的页岩储层空间，增大吸附气和游

离气的储存空间，具有较高的有效孔隙度和渗透率，从

而改善储层的渗流特性，为页岩气渗流提供有效通道．
由理论推导和实验验证得到气体在天然微裂缝及人工

裂缝中服从达西定律，即 α = 0．
基于上述页岩气多尺度流动模型，选取我国南方

海相露头区下志留统龙马溪组钻井取心样品，开展气

体流动规律实验． 岩心基础数据如表 1 所示．

表 1 岩心基础数据表
Table 1 Core parameters

岩心编号 长度 / cm 直径 / cm 渗透率 /10 － 6 μm2 孔隙度 /%

1# 6. 02 2. 51 0. 56 3. 274

2# 6. 00 2. 5 3. 54 2. 146

3# 5. 99 2. 49 7. 52 4. 127

4# 6. 00 2. 5 21. 75 5. 521

由图 2 可以看出:随着压力平方差的增加，气体渗
流流量增加;随着渗透率的增加，气体流动具有非达西

渗流特征，在 10 －7 ～ 10 －6 μm2范围内流量变化幅度不

大，在 10 －6 ～ 10 －5 μm2范围内变化的幅度较大，且当渗

透率增大到 10 －5 μm2时，气体流动逐渐表现出达西渗

流特征． 因此气体渗规律具有多尺度效应． 实验数据
与理论模型相吻合，因此该模型适用页岩储层多尺度
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渗流．

图 2 岩心渗流规律
Fig． 2 Gas flow law in the porous core

1. 2 页岩气吸咐--解吸模型
页岩气藏中吸附气和游离气共存，吸附气的解吸

是页岩气藏重要的产气机理，研究页岩气藏的吸附解

吸机理对页岩气藏的开发具有重要的影响［15］．
Langmuir从分子动力学理论推导出单分子层吸附

等温式． 郭为等［16］对我国川南地区龙马溪组页岩的
吸附与解吸特征进行实验研究，根据吸附 /解吸仿真实
验仪采集的压力、温度等，经处理计算不同平衡压力下
吸附和解吸过程的含气量． 将吸附模型和解吸模型分
别对等温吸附实验和等温解吸实验数据进行对比拟

合，得出用 Langmuir 模型描述页岩气等温吸附过程比
较合适．
气体吸附服从 Langmuir等温吸附方程:

VE = V (L
p

p + p )
L

． ( 2)

式中: VE为总吸附体积，m
3·t － 1 ; VL为 Langmuir体积，表

示最大吸附量，m3·t － 1 ; PL为 Langmuir 压力，表示吸附
量达到最大吸附量 50%时的压力，MPa．
考虑瞬时平衡条件，解吸量可以表示为

Vd = V (L

p i

p i + pL
－ p
p + p )

L
． ( 3)

式中: Vd为单位体积基质累计解吸量，m
3·t － 1 ; p i为原始

地层压力，Pa; p为气藏当前平均压力，Pa．

2 页岩气压裂井物理模型及求解

2. 1 含微裂缝表面层基质--裂缝双重介质球形模型
De Swaan［17］提出非稳态双重介质球形模型，如图

3 所示． 图中 Ｒm为压裂直井供给半径，m; rm为球形基
质半径，m． 假设储层由等径圆球状基质块分布排列，
裂缝则由圆球基质之间的孔隙表示． 流体从基质块内
流到球面，其压力等于裂缝压力，基质块中流体为裂缝

中流动提供源项．
Apaydin［12］基于双重介质球形模型，考虑页岩储层

图 3 双重介质球形模型示意图［17］

Fig． 3 Schematic illustration of a radial dual-porosity medium with

spherical matrix blocks［17］

中连续分布的微裂缝对渗流的贡献，建立球形基质表

面层模型． 假设球形基质分为两部分: 内部为球形基
质核，基质中微裂缝长度较短且不连续，只作为气体的

储集空间而忽略其对渗流的影响; 外部为附着在球形

基质核表面的同心球微裂缝表面层，表面层基质中微

裂缝连通，且与人工裂缝连通，既是气体的储集空间，

又是主要的渗流通道，如图 4 所示． 图中 rmc为球形基
质核半径，m; hmm为含微裂缝表面层基质宽度，m; hmf为

微裂缝开度，m; hms为微裂缝表面层厚度，m; Lms为为微

裂缝表面层长度，m; Ams为微裂缝表层面积，m
2 ． 分别

推导出基质核与表面层的流动方程，并通过之间的边

界耦合，得到基质核与表面层微裂缝耦合模型．

图 4 球形基质和球形基质表层模型示意图［12］

Fig． 4 Ｒepresentation of the fractured matrix-surface layer by a sys-

tem of slabs in parallel［12］

Kazemi［18］提出层状经典双重介质模型，基于 Ka-
zemi模型将表面层基质简化为一组均匀间隔的水平基
质层，微裂缝系统等价于基质之间的空间，如图 5
所示．
基质表面层的厚度取决于微裂缝的长度，假设表

面层的厚度( hms = rm － rmc ) 小于基质核的半径;认为基
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质核与表面层接触面压力和气体流量均匀分布; 近似

气体在表面层裂缝中的流动为线性达西流动; 忽略毛

细管力和重力对渗流的影响．

图 5 球形基质表层模型示意图［12］

Fig． 5 Geometry of the matrix and fracture slabs used to represent

the matrix surface layer［12］

2. 2 渗流数学模型建立及求解
在建立数学模型之前，作以下假设: ( 1 ) 球形基质

和表面层基质向微裂缝提供气源; ( 2 ) 基质和微裂缝
同时向人工裂缝提供气源; ( 3 ) 流向井筒的球形流只
通过人工裂缝．
由于人工裂缝网络的渗透率比页岩基质的渗透率

高几个甚至几十个数量级，因此认为假设 ( 1 ) 是合理
的． 假设( 2) 和 ( 3 ) 成立的前提是微裂缝有效沟通基
质与人工裂缝网络，并且假设气体从球形基质流到内

表面层时其压力等于微裂缝压力，即在 r = rmc处mmcD =
mmfD，气体经微裂缝流到球面时其压力等于裂缝压力，

即在 r = rm处 mmfD = mfD ．
2. 2. 1 定义模型参数和无因次参数
定义导压系数:

ηξ =
kξ

ξμctξ
． ( 4)

定义拟压力:

mξ ( p) = 2 ∫
p

p
(

ξ

1 + 3πa
16kξ

μDK )p
p
μZ

dp． ( 5)

定义拟时间:

ta ( p) = ∫
t

0

μ icti
( μcξ ) p

dt． ( 6)

定义无因次拟压力:

mξD =
1. 988 × 10 －5k fh ftTsc

qscpscT
Δmξ ． ( 7)

式中:下标 ξ 为 mc、ms、mf 和 f，分别表示球形核基质
区、表面层基质区、表面层微裂缝区和人工缝网区;
mξD为不同区域无因次拟压力，Pa; ta 为拟时间，d; ctξ为
综合压缩系数，Pa －1 ; qsc为标准条件下气井流量，m

3·
d －1 ; k f为缝网区整体渗透率，μm

2 ; h ft为裂缝总长度，m;
Tsc为标准状态下温度，K; psc为标准压力，Pa; T 为多孔
介质温度，K;  为储层孔隙度; Z 为气体压缩因子; μ i

为气体初始黏度，Pa·s; cti为气体初始综合压缩系数，
Pa －1 ． 其他无因次参数如表 2 所示．

表 2 其他主要无因次参数
Table 2 Non-dimensional parameters

参数 表达式

无因次拟时间 tD =
ηf

L2
ta

无因次导压系数 ηξD =
ηξ

ηf
=
( f ctfμ) kξ
( ξ ctξμ) kf

窜流系数［17］ λ = 10
kmf rmL2

kfhf r2m
，λms = 12 × L2

h2mm

kmshmm

kmfhmf

弹性储容比［17］ ω =
2 ( ct ) mf rm
3 ( ct ) fhf

，ωms =
( ct ) mshmm

( ct ) mfhmf

无因次距离
rD = r /L，ＲD = Ｒ /L，

θD = θ / ( hmm /2) ，hmmD = hmm /L

注: L为特征长度，本文中取水平井压裂裂缝半长 xF，m．

2. 2. 2 球形基质渗流数学模型的建立
考虑解吸和扩散作用，基于天然气渗流连续性方

程、运动方程和状态方程，建立球形基质不稳定渗流控
制方程:

1
r2

 [r r2 (· 1 + 3πa

16kmc

μDK

p )
mc

pmc

μZ
dpmc

d ]r +

pscT
TscZscρgsckmc

qd =
mcμctmc

kmc

pmc

μZ
pmc

t
，0≤r≤rmc ． ( 8)

式中: Zsc为标准状态下气体压缩因子; ρgsc为标准状态

下气体密度，kg·m －3 ．
因此，解吸量随时间的变化可以表示为

qd = ρgsc

Vd

t
= ρ (gsc

Vd

p ) (
mc

pmc

 )t ． ( 9)

其中，

Vd

pmc
= －

pLVL

( pmc + pL )
2 ． ( 10)

将式( 10) 代入式( 9) ，并作以下定义．
压缩系数:

ctmc = cm + cd ． ( 11)
其中，气体扩散压缩系数:

cm = cg·
pmc

pmc +
3πaμDK

16kmc

， ( 12)

cg =
1
pmc

－ 1
Z

dZ
dpmc

． ( 13)

解吸压缩系数:

cd =
pscTZ

TscZscmc

pLVL

( pmc + pL )
2

1

pmc +
3πaμDK

16kmc

． ( 14)

因为压缩系数 ct ( pmc ) 为压力 pmc的函数，代入拟

时间，得到气体在球形基质中的渗流数学模型为
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1
r2

 (r r2

dΔmmc

d )r = 1
ηmc

Δmmc

ta
，

0≤r≤rmc ． ( 15)
代入无因次参数，令 wmcD ( rD，ＲmD，tD ) = rDmmcD ( rD，
ＲmD，tD ) ，并进行 Laplace变换，得到球形基质无因次流
动方程，式( 15) 化为

2wmcD

r2D
－ s
ηmcD

wmcD = 0． ( 16)

初始条件:

wmcD ( rD = 0，ＲD，s) = 0． ( 17)
边界条件:

wmcD ( rmcD，ＲD，s) = wmfD ( rmcD，ＲD，s) ． ( 18)
代入边界条件可得球形基质压力分布 Laplace 空

间解:

mmcD =
rmcDsinh ( s /η槡 mD rD )
rDsinh ( s /η槡 mD rmcD )

mmfD ( 19)

式中，s为拉普拉斯算子，mξD为拉普拉斯变换拟压力函数．
2. 2. 3 球形基质表面层渗流数学模型的建立
( 1) 表面层基质渗流数学模型． 表面层基质不稳

定渗流控制方程:

2Δmms

θ2
= 1
ηms

Δmms

ta
，0≤θ≤hmm /2． ( 20)

代入无因次参数，并进行 Laplace 变换，得到无因次流
动方程，式( 20) 化为

2mmsD

θ2D
－

3ωm

λmsηmfD
s mmsD = 0，0≤θD≤1． ( 21)

初始条件:

mmsD ( θD = 0，s) = 0． ( 22)
边界条件:

mmsD

θD ( θD = 0，s)
= 0， ( 23)

mmsD ( θD = 1，s) = mmfD ( rD，s) ． ( 24)
代入边界条件可得复合层基质压力分布 Laplace

空间解:

mmsD =
(cosh

3ωms

λmsηmfD槡 sθ )D

(cosh
3ωms

λmsηmfD槡 )s
mmfD ． ( 25)

( 2) 表面层微裂缝渗流数学模型． 假设流入裂缝
的基质窜流量由相邻两基质的一半提供，基于天然气

渗流连续性方程、运动方程和状态方程，建立表面层微
裂缝不稳定渗流控制方程:


 (r
Δmmf

 )r － μ
kmf

槇qms ( r，t) =
1
ηmf

Δmmf

ta
，

rmc≤r≤rm ． ( 26)

式中，槇qms ( r，t) 表示单位时间、单位体积表面层基质流
入微裂缝表层的窜流量，m3·s －1 ．

槇qms ( r，t) =

－
qms ( θ，t) | ( θ = hmm /2，t)

Amfhmf /2
= － 2

h (
mf

kms

μ
pms

 )θ ( θ = hmm /2，t)
．

( 27)
式中，Amf为基质与裂缝接触的表面积，m

2 ．
式( 27) 代入式( 26) 得


 (r
Δmmf

 )r －
2kms

kmfhmf

Δmms

θ ( θ = hmm /2，t)
= 1
ηmf

Δmmf

ta
．

( 28)
代入无因次参数，并进行 Laplace变换:

2mmfD

r2D
－
λm

3
mmsD

θD ( θD = 1，s)
－ s
ηmfD

mmfD = 0，

rmcD≤rD≤rmD ． ( 29)
其中，

mmsD

θD ( θD = 1，tD)
=

3ωm

λmηmfD槡 s (tanh
3ωm

λmηmfD槡 )s mmfD ．

( 30)
将式( 30) 代入式( 29) 得

2mmfD

r2D
－ ummmfD = 0． ( 31)

初始条件:

mmfD ( rD，tD = 0) = 0． ( 32)
边界条件:

mmfD ( rmD，s) = mfD ( ＲD，s) ， ( 33)
mmfD

rD ( rmcD，s)
=
kmchmm

kmfhmf

mmcD

rD ( rmcD，s)
． ( 34)

代入边界条件可得复合层微裂缝压力分布 La-
place空间解:

mmfD =

( u槡 m － fmf ) + ( u槡 m － fmf ) exp［2 u槡 m ( rD － rmcD) ］
( u槡 m － fmf ) + ( u槡 m － fmf ) exp［2 u槡 m ( rmD － rmcD) ］

·

exp［ u槡 m ( rmD － rmcD) ］mfD． ( 35)
式中:

um = sfm ( s) ， ( 36)

fm ( s) =
1
η [

mfD
1 +

λmωmηmfD

3槡 s (tanh
3ωm

λmηmfD槡 ) ]s ，

( 37)

fmf ( s) =
h2
mmDλm

12rmcDL
2［ s /η槡 mDrmcDcoth ( s /η槡 mDrmcD) －1］．

( 38)
2. 2. 4 人工缝网区气体渗流数学模型
对于圆形封闭边界地层中心直井，考虑基质--微

裂缝--人工裂缝网络，假设流体从基质到人工裂缝仅
经由微裂缝，并且从每个球形基质块流出的瞬时平均

流量为基质块外部裂缝体积的一半，利用双重介质模

型，基于天然气渗流连续性方程、运动方程和状态方
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程，建立人工缝网区中页岩气非稳态渗流控制方程:

1
Ｒ

 (Ｒ Ｒ

Δmf

 )Ｒ － μ
k f

槇qmf ( Ｒ，t) =
1
η f

Δmf

ta
． ( 39)

式中，槇qmf ( Ｒ，t) 表示单位时间、单位体积微裂缝流入裂
缝的窜流量，m3·s －1 ．

槇qms ( Ｒ，t) = －
qmf ( rm，Ｒ，t)

Vf /2
= －

2hmf

hfh (
mm

kmf
μkf
ΔmfD

r )
D ( rm，Ｒ，t)

．

( 40)
将式( 40) 代入式( 39 ) ，代入无因次参数，并进行

Laplace变换:

1
ＲD


Ｒ (

D
ＲD

ΔmfD

Ｒ )
D

－
2kmfhmf

k fh fh (
mm

ΔmfD

r )
D ( rm，Ｒ，t)

－

sΔmfD = 0． ( 41)
其中

(
，

mfD

r )
D ( rmD，ＲD，s)

= －
5hmm

hmfrmD
f f fms mfD ( ＲD，s) ，( 42)

1
ＲD


Ｒ (

D
ＲD

ΔmfD

Ｒ )
D

－ uΔmfD = 0． ( 43)

初始条件:

mfD ( ＲD，s = 0) = 0． ( 44)
边界条件

(
:

ＲD

mfD

Ｒ )
D ＲD = ＲwD

= － 1
s ， ( 45)

mfD ( ＲD→∞，s) = 0． ( 46)
代入边界条件可得圆形封闭边界地层中页岩气井

以定产量生产时压力分布 Laplace空间解:

mfD =
K0［槡uＲD］

槡s uＲwDK1 (槡uＲwD )
． ( 47)

式中，K0 ( z)和 K1 ( z)分别为零阶和一阶修正贝塞尔函数．
u = sf( s) ， ( 48)

f( s) = 1 － λfm ( s) f f ( s) ， ( 49)

f f ( s) =
hmfDrmD

5 u槡 mhmmD

·

( u槡 m － fmf ) － ( u槡 m + fmf ) exp［2 u槡 m ( rmD － rmcD) ］
( u槡 m － fmf ) + ( u槡 m + fmf ) exp［2 u槡 m ( rmD － rmcD) ］

．

( 50)

对式 ( 47 ) 进行 Stehfest 数值反演，即可计算得到
页岩储层压裂直井实时域空间的解． 均质储层的页岩
气井以定产量生产时压力分布 Laplace 空间解在形式
上等同于压裂直井，因此式( 49) 反映了含微裂缝表面

层基质--裂缝双重介质球形模型特征及页岩储层中连
续分布的微裂缝对渗流的贡献．

3 敏感参数影响因素分析

基于式( 47) ～式( 50) ，考虑扩散和滑移对渗流的
综合影响，利用 Langmuir 等温吸附方程描述页岩气的
吸附现象，考虑微裂缝的连通性，将含连续微裂缝基

质--裂缝双重介质球形模型与页岩气藏压裂水平井三
线性流模型相结合，将上述推导结果代入页岩气藏压

裂水平井产能公式［10，19
--20］，结合页岩气藏的参数 ( 表

3) ，绘制页岩气水平井不稳定产量随时间的关系曲
线，通过改变微裂缝长度、微裂缝渗透率、扩散系数、极
限解吸量等参数，分析各参数对页岩气藏不稳定产能

动态特征曲线的影响．

表 3 页岩气储层参数
Table 3 Shale gas reservoir parameters

参数 取值 参数 取值

储层厚度，h /m 30 基质球半径，re /m 2

水平井长度，Lh /m 1600 缝网区渗透率，kf /10 － 3 μm2 2

储层半宽，xe /m 80 缝网区孔隙度，φf 0. 45

压裂缝半间距，ye /m 80 缝网区裂缝开度，hf /μm 200

黏度，μ / ( mPa·s) 0. 027 水力压裂缝渗透率，kF /10 － 3 μm2 100

基质渗透率，kmc /10 －6 μm2 0. 5 水力压裂缝隙度，φF 0. 38

基质孔隙度，m 0. 03 水力压裂缝半长，xF /m 80

微裂缝渗透率，kmf /10 － 3 μm2 0. 02 水力压裂缝开度，wF /m 0. 003

微裂缝孔隙度，φmf 0. 25 原始地层压力，pe /MPa 25

微裂缝开度，hmf /μm 2 日产量，qsc / ( m3·d －1 ) 2000

表面层厚度，hms /m 0. 2rm 井底流压，pw /MPa 6

图 6 反映了基质--微裂缝渗透率对页岩气水平井
无因次产量动态曲线的影响． 从图中可以看出: 微裂
缝渗透率越大，人工缝网区与基质区的沟通性越好，页

岩储层体积压裂水平井产气量也就越大; 微裂缝渗透

率对生产前、中期的影响较大． 页岩储层致密，基质渗
透率较小，流向微裂缝的页岩气量减少，基质与微裂缝

·113·



工程科学学报，第 38 卷，第 3 期

之间的窜流能力对产气量具有一定影响，当基质渗透

率增大到 0. 5 × 10 －6 μm2时，微裂缝渗透率对产气量的

影响逐渐减小．

图 6 基质--微裂缝渗透率对无因次产量的影响
Fig． 6 Effect of matrix and micro-fracture permeability on the dimen-
sionless production performance

图 7 反映了微裂缝长度对页岩气水平井无因次产
量动态曲线的影响． 从图中可以看出，生产前期，微裂
缝的长度越长，连通性越好，页岩储层水平井无因次产

气量越大． 生产中后期，随着生产时间的增加，泄压速
度越快，产量降低速度加快．

图 7 微裂缝长度对无因次产量的影响
Fig． 7 Effect of matrix surface layer thickness on the dimensionless
production performance

图 8 反映了扩散系数对页岩气水平井无因次产量
动态曲线的影响． 储层性质不同，扩散系数不同，对产
气量影响很大． 从图中可以看出产气量随着扩散系数
的减小而减小，当扩散系数小于 6 × 10 －7 m2·s －1时，产

气量分段式变化特征越明显．
图 9 反映了 Langmuir 等温吸附体积对页岩气水

平井无因次产量动态曲线的影响． Langmuir 体积越
大，页岩气井产量越大，产气量下降更为平缓． 投产前
期，页岩气藏压降较小，解吸量较少，对总产气量贡献

不大;中后期地层压力逐渐下降，气体解吸量增加．

图 8 扩散系数对无因次产量的影响
Fig． 8 Effect of diffusivity on the dimensionless production perform-
ance

图 9 极限解吸量对无因次产量的影响
Fig． 9 Effect of desorption on the dimensionless production perform-
ance

4 结论

( 1) 基于纳微米孔隙非线性渗流特征，引入多尺
度流动的新模型，建立了含连续微裂缝表面层基质--

裂缝双重介质球形模型，形成了含微裂缝的页岩气压

裂水平井的产能模型，通过 Laplace 变换和 Stehfest 数
值反演，求解得到了水平井井底流压及压裂水平井产

能公式，并对微裂缝长度、微裂缝渗透率、扩散系数、极
限吸附量等参数进行了影响因素分析．
( 2) 微裂缝网络的发育程度对页岩储层水平井体

积压裂产能有重要的影响． 微裂缝越多，基质与微裂
缝的连通性越好，微裂缝渗透率越大，产气量越大; 当

基质渗透率增大到 0. 5 × 10 －6 μm2时，微裂缝渗透率对

产气量的影响逐渐减小． 生产前期，微裂缝的长度越
长，产气量越大． 因此，页岩储层内部广泛发育的短裂
缝，既有利于游离气的大量存储，又可以显著地提高储

层的渗透性．
( 3) 页岩气井产气量随页岩基质扩散系数的增加
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而增大，当扩散系数增大到 6 × 10 －7 m2·s －1时，产气量

分段式变化特征变得不明显． 有机质孔隙内气体解吸
使页岩气井产量递减减慢，解吸量越大，页岩气井产量

越大，产量递减越慢，并对生产中、后期气体产能影响
较大．
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