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Inclusions in low carbon aluminum killed steel slabs at high casting speed
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ABSTRACT Inclusions in the surface of low carbon aluminum killed steel slabs cast at high casting speed were analyzed by Aspex
automated scanning electron microscopy in a large area. The changes in number and size of inclusions were tested at different casting
speeds and the influence of flow fields and sulfur content on the distribution of inclusions was explained in detail. It is found that
when the casting speed increases the depth and length of hooks decrease. Hooks in the slab subsurface is not obvious when the cast—
ing speed larger than 2memin~"  so inclusions larger than 200 pm cannot be found in the slab surface. Inclusions with the size of 50—
200 wm in the slab surface are mainly entrapped by the solidified shell and the entrapment of inclusions is influenced by forces acting
on inclusions at the solidifying front. The flow velocity of molten steel increases due to increasing casting speed then the washing force
becomes large and the entrapping force becomes small and therefore the number of entrapped inclusions decreases. If the sulfur con—
tent in the steel is high at high casting speed inclusions will be easily entrapped by the solidified shell due to the thermal Marangoni
force acting on inclusions obviously.
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Table 1 Chemical composition of low carbon aluminum killed steel for

test

%

C Si Mn P S Als
A 0.02 0.02 0.22 0.010 0.005 0.020
B 0. 04 0.01 0.32 0.013 0.007 0.036
C 0.03 0.01 0.22 0.010 0.010 0.028
D 0. 04 0.01 0.21 0.011 0.007  0.045

2
Table 2  Casting parameters of the slab samples
/ / FC
(m*min~')  mm /Hz  /mm /A

A 1.8 1000 3.62 3 665

B 2.0 1000 3.95 3 665

C 2.3 1050 4.45 3 665

D 2.5 1000 4.78 3 665
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