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High-temperature fracture toughness of high Nb-containing TiAl alloys
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ABSTRACT The fracture toughness of a nearly lamellar Ti—45A1—8Nb—0.2W—0. 2B—0. 1Y alloy and a fully lamellar Ti—45Al—
TNb—0. 2W—0. 2Hf—0. 3B—0. 15C alloy at 750 °C was investigated by prefabricating a fatigue crack in the compact tension ( CT) speci-—
men and the corresponding fracture morphologies were observed by optical microscopy and scanning electron microscopy. It is found
that the fracture toughness of the nearly lamellar high Nb-containing TiAl alloy is 19. 54 MPa*m'”* at 750 °C  obviously lower than the
value of 31. 58 MPa*m'” for the fully lamellar alloy. The maximum cyclic load at which the fatigue crack initiates in the nearly lamellar
alloy is noticeably less than that in the fully lamellar alloy. Fracture images show that for the nearly lamellar alloy cracks initiate
mainly in equiaxed y grains and propagate in different ways intergranularly or transgranularly in v grains or lamellar colonies. But for
the fully lamellar alloy cracks initiate mainly at lamellar interfaces perpendicular to the load direction and propagate in both interla—
mellar and translamellar ways in accompanying with secondary crack initiation.

KEY WORDS titanium aluminum alloys; fracture toughness; high temperature properties; fatigue cracks; crack initiation; crack
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Fig.2 Loading waveform for prefabricating the fatigue crack

2.1
Ti—45A1—8Nb—0.2W—0.2B—0. 1Y

v/ o,
v 70 pm



- 381-

TiAl
3(b) Ti—45Al1—7Nb— 100 pm
0.2W—0. 2Hf—0. 3B—0. 15C .2 TiAl 750 °C
v/, 1

AccV  Probe | Mag WO Det

150KV, 40 .\.-VIN\ A S

AccV  Pobe  Mag WD Det H—— 100um
150K 40 100 23 SE

TiAl  ;(b) TiAl

Fig.3 SEM images of the tested alloys: (a) nearly lamellar high Nb-containing TiAl alloy; (b) fully lamellar high Nb-containing TiAl alloy

1 750 °C

Table 1 Tensile properties of the specimens at 750 C

o, /MPa oy, /MPa 8/% Pl %
Ti—45A1-8Nb—0. 2W—0.2B—0. 1Y 586 795 1.1 3.1
Ti—45A1-7Nb—0. 2W—0. 2Hf—0. 3B—0. 15C 638 745 — 2
2.2 Ti—45A1—8Nb—0. 2W—
4 Ti—45A1-8Nb—0. 2W—0.2B—0.1Y  0.2B—0.1Y 750 °C
: K, =K, =19.54 MPa*m'”.
P, =2000 N. 4(a) (b) 5 Ti—45Al—=7Nb—0. 2W—0. 2Hf—0. 3B—
0.15C
P, =3000 N
5(b)
a a, =2.46 mm
a =12.46 mm. (1)
4 K, =31.58 MPa*m'”.
K 2
_Q _ _ —
a, 4(b) a, =2. 10 mm (1) 2.5 (0_5) =6.13mm<B a W-a(B=
a=12. 10 mm. 10mm a=12.46 mm W —a =7.54 mm)
K, (2) P,./P,=1<1.1.
" Ti—45A1—7Nb—0. 2W—
K, - Po. [296 (i) _185. 5 (i) . 0. 2Hf—0. 3B—0. 15C 750 C
BW” v v K, =Ky =31.58 MPasm'"”,
o\ 01 a\ 7 a3 2.3
655.7 (W) -1017.0 (W) +638.9 (W) ] 4(c)  (d) Ti—45A1—8Nb—0. 2W —
(1) 0.2B—0.1Y
K, =19.54 MPa*m'”. 4( c)
KQ ’ Y
(1) 2.5 (7) =2.78mm<B a W-a(B=
g, TiAl v
10.0mm a=12.10mm W -a =7.90 mm) ; 4(d)

(2) P,./P,=1<1.1.
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Fig.4 Fracture morphologies of the nearly lamellar Ti—45A1—8Nb—0. 2W—0. 2B—0. 1Y alloy: ( a) macroscopic morphology; ( b) morphology of

Region A; (c¢) morphology of Region B ( crack initiation area) ; ( d) morphology of Region C ( steady state crack propagation area)
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Fig.5 Fracture morphologies of the fully lamellar Ti—45A1=7Nb—0. 2W—0. 2H{—0. 3B—0. 15C alloy: ( a) macroscopic morphology; ( b) morphology

of Region A; (c¢) morphology of Region B ( crack initiation area) ; ( d) morphology of Region C ( steady state crack propagation area)
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