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摘 要 为揭示冷轧带钢可见浪形的形成机理，通过实测残余应力值计算分布位错，提出分布位错--残余应力模型． 利用平
面弹性复变方法计算弹性平板中一条带有典型分布位错的直线粘接边界所产生的应力场，分析该应力场的特点及多条互相

平行的带有分布位错的直线粘接边界所产生应力场间的相互影响． 同时结合实测数据，给出实际分布位错的计算结果，其对
应的残余应力近似值与残余应力实测值误差较小，且这一方法具有一般性． 进一步分析分布位错，给出带钢屈曲挠度函数的
形式，与现场实际起浪形式相吻合．
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ABSTＲACT In order to reveal the formation mechanism of the manifested waves of cold rolled strips，the distributed dislocation was

calculated by using measured residual stress，and a distributed dislocation--residual stress model was proposed． The stress field of an
elastic plane with a typically distributed dislocation in the straight boundary was analyzed using the complex variable function method of
plane elasticity，and the interaction was studied between the stress fields due to several straight lines with the distributed dislocation．
In combination with measured data，the actual distributed dislocation which corresponds to a small relative error of residual stress was
calculated in a general way． The form of the deflection function was shown by analyzing the distributed dislocation，which coincides
with the actual buckling mode．
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在冷轧带钢生产中，若轧制方向塑性伸长沿宽度

方向分布不均匀，带钢就会产生面内残余应力，当这种

塑性伸长的不均匀性达到一定程度后，带钢就会产生

可见浪形． 长期以来，冷轧带钢起浪问题的研究是以
某种理想形式残余应力和挠度函数作为出发点，应用

能量变分法［1
--7］、摄动法［5--6］、解析的 Галёркин 法［8］、

经典有限单元法［5，9
--10］或样条有限元法［7，11

--12］等对其

进行整体或局部的弹性稳定性分析，得到失稳有关的

几何参数、临界失稳限、后屈曲场变量或屈曲路径． 但
存在以下几个问题: 第一，根据现场实测数据，冷轧带
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钢残余应力具有非常复杂的分布形式，普遍存在某些

局部特性( 如应力尖峰) ，沿宽度方向变化剧烈，沿轧

制方向亦有变化，且往往有形式上的质变 ( 如中浪倾

向转变为边浪倾向) ;第二，冷轧带钢的起浪形式也较

为复杂，沿轧制方向分段地表现出周期性，沿宽度方向

没有明显规律;第三，传统的分析方法忽略了带钢在几

何上的缺陷及残余应力的内应力属性，而是将一个自

平衡的面内外力场加载到一个规则的矩形板上作为分

析的基本模型; 第四，从冷轧带钢起浪问题的实质来

看，残余应力并非其根源，应该与起浪一起看作是不均

匀塑性伸长的结果，因为带钢在离线状态下发生大挠

度屈曲后，应力场会重新分布，但其塑性变形却保持

不变．
为克服以上问题，有必要引入变形体非协调理

论［13］并建立分布位错--残余应力模型． 利用变形体非
协调理论“假想切割”方法:假设将带有残余应力的带
钢沿宽度方向平直切开，切口两侧产生变形而分别成

为连续光滑的曲线段． 反之，再将变形后的两块钢板
粘接起来，由于粘接边界具有位移差，粘接后的整体会

带有残余应力． 这种位移差实际上是沿宽度方向不均
匀分布的轧制方向位错( 简称分布位错) ，它直观反映

了带钢塑性变形的非协调性及面内几何缺陷，是带钢

起浪的根本原因． 基于这一观点，可建立能够适用于
实测数据( 复杂残余应力分布) 的分布位错--残余应力
模型，通过在线检测得到的残余应力值计算分布位错．

建立冷轧带钢的分布位错--残余应力模型归结为
弹性力学中位错引起的本征应变问题平面应力情形，

这类问题采用常规弹性力学方法比较难以求解，甚至

很难采用有限元方法求解，但复变函数论是求解这类

问题的有效方法，并已经建立成熟的理论体系［14］，至

今仍被广泛应用于求解有关位错、断裂的弹性力学问
题． 例如，文献［15］利用平面弹性复变方法研究点群
10 mm准晶体的位错问题，将所有的场变量用 4 个解
析函数进行表示，得到准晶位错问题位移场的解析表

达式，并分析 2 个平行位错间的相互影响; 文献［16］
利用复变函数方法，通过构造位错分布层解决平面弹

性问题中的内外边值问题，数值算例证明这种方法的

精确性;文献［17］利用 Мусхелишвили 复变公式及边
界配置法计算带有中心穿透直裂纹弹性薄板受压时的

应力场，并在此基础上研究其稳定性问题，得到的挠度

解与数值模拟及实验结果高度吻合;文献［18］研究各
向同性弹性半平面上二次形式的非均匀位移差( 分布

位错) 引起的应力场，通过复变方法得到应力场的

Green函数，并最终得到问题的精确解． 以上研究均成
功应用平面弹性复变方法解决了各自的本征应变问

题． 借鉴他们的思路，本文从平面弹性复变方法的基
本理论出发，在全平面同种各向同性材料的粘接问题

基础上，研究弹性平板中一条带有典型形式分布位错

直线粘接边界的残余应力，进而建立分布位错--残余
应力基本模型，利用基本模型中残余应力构造性地逼

近实测残余应力来反求分布位错，最终建立冷轧带钢

的分布位错--残余应力模型，实现由实测残余应力计
算带钢分布位错，并给出局部屈曲挠度函数的形式，为

基于变形体非协调理论的冷轧带钢后屈曲分析提供

基础．

1 基本数学模型的建立

1. 1 平面弹性复变方法研究粘接问题
平面弹性复变方法的基本思路是将弹性力学平面

问题转化为解析函数边值问题［19］，通过求解带有

Cauchy 核的奇异积分方程得到复势，即 Колосов--

Мусхелишвили复应力函数 φ( z) 和 ψ( z) ，或将未知复
应力函数及已知边界条件分别进行 Laurent级数展开，
通过比较求得待定系数，再由式 ( 1 ) 得到位移分量 u
和 υ以及应力分量 σx、σy 和 τxy

2μ( u + iυ) = κφ( z) － z φ'( z) － ψ( z) ，
σx + σy = 4Ｒe［φ'( z) ］，

σy － σx + 2iτxy = 2［zφ″( z) + ψ'( z) ］
{ ．

( 1)

式中，i为虚数单位，z = x + iy 为复变量，φ' ( z) 代表 φ
( z) 对 z 求一阶导数，φ'( z) 代表对 φ' ( z) 取共轭，Ｒe
［φ'( z) ］代表对 φ' ( z) 取实部，以此类推． μ 和 κ 为弹
性常数，分别满足:

μ = E
2( 1 + ν)
; κ =

3 － 4ν ( 平面应变问题) ，
3 － ν
1 + ν
( 平面应力问题){ ．

( 2)

式中，E为弹性模量，v为泊松比．
已知弹性体所占平面区域上 Jordan 曲线 ( 或

Jordan弧) 两侧有给定微小分布位错，求弹性平衡的问
题被称作平面弹性“焊接”问题［14］． 由于这些问题实
际上不涉及温度和热应力，为避免产生歧义，本文称其

为粘接问题．
1. 2 全平面同种各向同性材料的粘接问题
设弹性体占满整个复平面 ，无穷远处无应力及

转角，且由同种各向同性材料粘接而成，这些相互粘接

的边界是 p条互不相交的充分光滑闭曲线或延伸至无
穷远的曲线 γ1，γ2，…，γp ． 各 γ j 取逆时针方向为正向，

并记

γ = ∑
p

j = 1
γ j ． ( 3)

式中，γ为全体相互粘接边界曲线构成的点集． 允许 γ
上有正负侧分布位错( 即位移差)

h( t) = u + ( t) － u － ( t) + i［υ + ( t) － υ － ( t)］，t∈γ．
( 4)

式中，t为位于曲线点集 γ 上而有别于 z 的复变量，u +
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( t) 代表 u( t) 在 t处的正极限，以此类推． 设 h( t) 充分
光滑，将式( 1 ) 中位移分量与复应力函数的关系式代
入式( 4) 得
κφ + ( t) － t φ' + ( t) － ψ + ( t) = 2μh( t) + κφ － ( t) －

t φ' － ( t) － ψ － ( t) ，t∈γ． ( 5)
另一方面，γ上还应满足应力矢量的连续

φ + ( t) + t φ' + ( t) + ψ + ( t) = φ － ( t) +
t φ' － ( t) + ψ － ( t) ，t∈γ． ( 6)

于是，复平面上两解析函数 φ( z) 和 ψ( z) 的边值问题
由此建立． 当 z∈ 且 zγ ( 即 z∈ \γ) 时，为简化问
题的求解可设

φ( z) = 1
2πi ∫γ ω( t)t － z dt， ( 7)

ψ( z) = － 1
2πi ∫γ ω( t) + tω'( t)

t － z dt． ( 8)

在式( 7) 和式( 8) 中，ω( t) 是 γ上引进的另一未知
函数，积分号下的 γ 代表对复变量 t 沿复平面上的点
集 γ进行积分． 当 z∈γ 时，式 ( 7 ) 和式 ( 8 ) 可看作相
应主值积分的简写，若 ω ( t) 满足 Hlder 条件［19］，则
主值积分存在，进而复应力函数在整个复平面上均

有意义．
利用 Plemelj公式，易知复应力函数的表达式( 7 )

和( 8) 自动满足 γ上应力矢量的连续条件( 6) ，故只需
考虑 γ上给定正负侧分布位错的式 ( 5 ) ． 式 ( 7 ) 和式
( 8) 代入式( 5) ，利用 Plemelj公式化简得

( 1 + κ) ω( t) = 2μh( t) ，t∈γ． ( 9)
至此，全平面同种各向同性材料粘接问题的复变函数

提法完成． 由于该问题的几何与材料特点，由已知分
布位错求解应力场和位移场的过程中并不涉及解具有

Cauchy核的奇异积分方程．
1. 3 弹性平板中一条带有分布位错直线粘接边界的
残余应力

如图 1 所示，令上文中相互粘接的边界为实轴，取
实轴正向为边界正方向，进而上半平面 Z +为正侧，下

半平面 Z —为负侧，正负两侧分布位错为一纯虚函数

h( t) =
iδ( t) ， － a≤t≤a;
0， t ＞ a或 t ＜ － a{ ．

( 10)

式中，δ( t) 为一实函数，反映了分布位错在实轴上的分
布，并满足连续条件 δ( a) = δ( － a) = 0 及光滑条件 δ'
( a) = δ'( － a) = 0．
将式( 10) 代入式 ( 9 ) 后，再代入式 ( 7 ) 和式 ( 8 ) ，

由于问题属平面应力问题，考虑到式( 2) ，利用分部积
分得

φ'( z) = E
8π ∫

a

－a

δ'( t)
t － z dt， ( 11)

ψ'( z) = － zφ″( z) ． ( 12)
设

图 1 弹性平板中一条带有分布位错的直线粘接边界示意图
Fig． 1 Schematic illustration of an elastic plane with a distributed
dislocation on the straight boundary

Ｒe［φ'( z) ］= g( x，y) ， ( 13)
将式( 12) 和式( 13) 代入式( 1) 中应力分量与复应力函
数的关系式，并利用解析函数的 Cauchy--Ｒiemann 条
件得

σx (= 2 g + y g
 )y ，

σy (= 2 g － y g
 )y ，

τxy = － 2y g
x











 ．

( 14)

采用如下满足连续光滑条件的典型分布位错:

h( t) = iε
a4 H( a + t) H( a － t) ( a2 － t2 ) 2，t∈γ． ( 15)

式中，H( x) 为 Heaviside函数，ε为一足够小的正数，使
得问题仍属线弹性范畴． 显然，h( t) 满足 Hlder条件，
由式( 9) 有 ω( t) 满足 Hlder条件． 考虑到式( 10) 有

δ( t) = ε
a4 H( a + t) H( a － t) ( a2 － t2 ) 2 ． ( 16)

将式( 16) 代入式( 11) ，计算出 φ'( z) 的实部 g( x，y) 并
代入式( 14) 可得各应力分量，由于其他位置上具有相
似的形式，只给出 y = 0 的表达式

σx =σy =
Eε
π [ (a

x2

a2 ) (－1 x
a ln x － a

x + a )+2 + ]2
3 ，

τxy =0
{ ．

( 17)
将 σy、x和 y量纲一化，轧制方向量纲一的正应力 σ =
πaσy /Eε，宽度方向量纲一的坐标 ξ = x /a，与粘接处量
纲一的距离 η = y /a，并以量纲一的 σ、ξ 和 η 绘图，考
虑到 σ是关于 ξ和 η的偶函数，故只画出一半的图形．
如图 2 所示，σ在 ξ→ ± 1 时取极大值 2 /3; 在 ξ = 0 处
取极小值 － 4 /3;当 ξ→ ± ∞时，σ→0;当 | ξ |≥2 时，0 ＜
σ ＜ 0. 075; ξ≈ ± 0. 6232 为零点; 在 | η | = 2 处，应力值
只有粘接处的 10%左右． 事实上，该应力场仅在实轴
附近数值较大，且有如下近似关系

σ( ξ，η)≈H( 2 + ξ) H( 2 － ξ) H( 2 +η) H( 2 －η) σ( ξ，η) ．
( 18)

另一方面，轧制方向量纲一的正应力满足

∫
+∞

－∞
σ( ξ，η) dξ = 0，

∫
+∞

－∞
σ( ξ，η) dη = 0{ ．

( 19)
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图 2 轧制方向量纲一化的正应力沿宽度方向的分布
Fig． 2 Distribution of dimensionless normal stress in the rolling di-
rection along the wide direction

考虑到式( 18) 有

∫
2

－2
σ( ξ，η) dξ≈ 0，

∫
2

－2
σ( ξ，η) dη≈ 0{ ．

( 20)

另外，还可以计算出位移场，仍给出 y = 0 处的表达式:

u + = u － = ( 1 － v) ε
4 [ (π

x2

a2 )－ 1
2

ln a － x
a + x －

10
3

x
a + 2 x3

a ]3 ，

υ + = － υ － = ε
2 H( a － x) H( a + x () x2

a2 )－ 1
2











 ．

( 21)
可见正负侧分布位错 u + － u － + i ( υ + － υ － ) 恰为式

( 16) 所给出的表达式，故 y = 0 处具有多值的弹性位
移，对应非协调的弹性应变场，而总应变场是协调

的［13］，故塑性应变在 y = 0 处非协调．
1. 4 平弹性平板中多条带有分布位错直线粘接边界
应力场间的相互影响

冷轧带钢塑性变形的非协调性体现在全长上，必

须用一系列带有分布位错 δ 的粘接边界 γ 进行刻画．
记 1. 3 节中由 δ( t) 计算得到应力张量 T 的过程为算
子 F，即

T( x，y) = F［δ( t) ，z］， ( 22)
其代表于 y = 0 处的分布位错所产生的全局应力场．
根据小变形线弹性力学的叠加原理，当复平面上有 n
条平行于实轴的分布位错时，全局应力场为

T( x，y) = ∑
n

j = 1
F［δ j ( t) ，z － iη j］． ( 23)

式中，η j 为 γ j 与实轴的距离( η1 = 0 ) ，δ j ( t) 为 γ j 上分

布位错的分布形式． 这表明冷轧薄板某处的应力状
态不仅由该处的分布位错决定，还决定于其他位置

上的分布位错． 然而，当 γ j 间的距离足够大时，这种

相互影响可以忽略． 以式( 16 ) 对应的分布位错为例，
由式( 18) ，与实轴距离超过 2a时，T≈0． 另一方面，由
于各物理场的连续性，相邻分布位错的分布形式不应

有太大变化，进而它们应当产生具有相近分布形式的

应力场 ( 反之亦然 ) ，即 F［δi － 1 ( t ) ，z － iη i － 1］| y = 0≈
F［δi ( t) ，z － iη i］| y = 0 ．
综上所述，当分布位错的分布沿 y 方向的变化较

为平缓时( 进而应力分布沿 y 方向变化较为平缓) ，且
相邻 γ j 间的距离足够大时，γ j 上的应力场只由 γ j 上的

分布位错所决定，与其他位置上的分布位错无关．

2 计算实例与讨论

2. 1 冷轧带钢残余应力的计算实例
某冷轧厂生产的宽规格薄带钢存在明显板形问

题，且起浪区域大、形式复杂多变，其冷连轧机第 5 机
架出口处 SI--FLAT 非接触式板形仪可检测得到带钢
残余应力分量 σy ( y 为轧制方向) ． 对形如式( 17 ) 中
σy 对应的函数进行平移、伸缩及叠加后分别对每一横
截面上的残余应力数据进行逼近而不影响其他横截面

上的构造结果． 由于每卷带钢沿轧制方向的检测数据
个数可达 1000 ～ 2000 个，故仅以一卷厚度为 0. 2 mm、
宽度为 1575 mm 的带钢某横截面上残余应力分量 σy

( 76 个离散检测点) 为例说明构造方法，弹性模量 E取
2. 1 × 105 MPa．
设带钢沿宽度方向 x占据 0 ～ 1575 mm的区域，考

虑到检测的补偿机制［20］，给出带钢残余应力实测值 σy

的边值点和极值点，如表 1 所示． 残余应力的数量级
验证了采用弹性理论的合理性． 在这些点之间，σy 的

变化趋势是单调的，该带钢在此截面附近具有产生边

中复合浪的倾向． 对于边部压应力区域，可用式 ( 17 )
对应解在正( 负) 半轴的表达式来构造，由式( 20 ) ，其
近似满足自平衡条件，但不能满足自由边界条件;对于

中部的压应力区域，可用式( 17) 对应解的整体表达式
来构造，由式( 20) ，其近似满足自平衡条件． 由于两边
值为负，且有两个负的极小值，进而可近似地用 4 个形
如式( 17) 中 σy 对应的函数构造出残余应力的近似表

达式:

槇σy = ∑
4

j = 1

3sj { [4
( x － bj )

2

a2
j

]－ 1

(
·

x － bj

aj
ln

x － bj － aj

x － bj + aj
)+ 2 + }2

3 ． ( 24)

并且对比式( 17) 和式( 24) 有

ε j =
3πaj sj
4E ． ( 25)

式中: s1 = 7. 7702 MPa 为左边值的绝对值，s2 = 5. 7144
MPa为第 1 个负极小值的绝对值，s3 = 6. 2545 MPa 为
第 2 个负极小值的绝对值，s4 = 28. 5301 MPa 为右边值
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的绝对值，它们决定了分布位错及应力的幅度; a1 =
165 mm 为左边值与相邻正极大值的距离，a2 =
( 697. 5 － 165) /2 = 266. 25 mm为第 1 个负极小值对应
两极大值间距离的 1 /2，a3 = ( 1410 － 345) /2 =
532. 5 mm为第 2 个负极小值对应两极大值间距离的
1 /2，a4 = 1575 － 1410 = 165 mm为右边值与相邻正极大
值的距离，它们决定了分布位错的宽度; b1 = 0 mm 为
左边值的位置，b2 = 577. 5 mm 为第 1 个负极小值的位
置，b3 = 877. 5 mm为第 2 个负极小值对应两极大值的
中点，b4 = 1575 mm为右边值的位置，它们决定了分布
位错的位置;由式( 25 ) ，各处分布位错的最大值 ε1 =
14. 3849 μm，ε2 = 17. 0707 μm，ε3 = 37. 3684 μm，ε4 =
52. 8177 μm，这印证了上文中 ε 是小量的假设． 残余
应力实测值与近似值的对比如图 3 所示．

表 1 带钢残余应力实测值的边值点与极值点
Table 1 Boundary value and extreme value points of measured residual
stress

性质 位置 /mm 应力 /MPa

边值 0 － 7. 7702

极大值 165. 0 7. 4239

极小值 285. 0 3. 0846

极大值 345. 0 4. 4079

极小值 577. 5 － 5. 7144

极大值 697. 5 － 3. 8798

极小值 877. 5 － 6. 2545

极大值 1410. 0 17. 7046

边值 1575. 0 － 28. 5301

图 3 残余应力实测值与近似值的对比
Fig． 3 Comparison between measured residual stress and approxima-
tion

由于轧制方向上相邻检测点间的距离一般为

2000 mm，考虑到式 ( 18 ) ，上述计算结果中 2aj ＜ 1500
mm，该横截面上构造的残余应力在其他被检测横截面
处的值接近零． 事实上，对大量带钢每一横截面上的

残余应力进行分析后，发现这一点都是成立的． 换言
之，可以用带钢被检测处作为 2. 1 节中一系列带有分
布位错的粘接边界 γ，且各自产生的应力场互不影响．
2. 2 采用分布位错衡量冷轧带钢塑性变形的非协调
程度

由式( 16) ，可得分布位错的表达式:

δ( x) = ∑
4

j = 1

ε j

a4
j

H( aj － bj + x) H( aj + bj －

x) ［a2
j － ( x － bj )

2］2 ． ( 26)
当带钢沿被检测的横截面切开并释放为无应力状

态后，切口两侧发生变形而不再保持平直，产生如图 4
所示分布位错一半的沿轧制方向位移 ( 认为两侧的位

移关于切口对称) ． 若在原有切口附近再做一切口，根
据式( 18 ) ，由于附近残余应力已被第 1 个切口“释
放”，第 2 个切口两侧将保持平直． 然而，若在离原有
切口较远的位置将带钢平直切开，则新的切口两侧仍

会发生变形． 因此，可以采用假想切口处的分布位错
来衡量冷轧带钢的变形非协调程度，具有直观的物理

意义． 另外，冷轧带钢残余应力通常达到 106 Pa，根据
分布位错—残余应力模型，其分布位错达到 10 －5 m，可
见极度细微的非协调变形即会引起较高的残余应力乃

至屈曲．

图 4 分布位错的计算值
Fig． 4 Calculated values of the distributed dislocation

2. 3 冷轧带钢屈曲挠度函数的形式
在计算得到冷轧带钢某一横截面附近的分布位错

后，可对其进行稳定性分析． 由于带钢浪形在轧制方
向呈现出分段的周期性，设局部屈曲挠度函数为

w( x，y) = f( x) sin nπy
l ． ( 27)

式中，波浪沿轧制方向特征长度 l 及波数 n 均待定，
f( x) 为反映挠度沿宽度方向分布的待定函数． 冷轧带
钢厚度一般在 10 －4 ～ 10 －3 m，而最大起浪高度往往达
到 10 －2 m，属于典型的弹性薄板大挠度屈曲问题，也是
典型的小伸长、大转动几何大变形问题，根据这一几何
变形特点，可以忽略终了构型下的面内 ( 此时已经是
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曲面) 压缩作用，进而有

∫
l

0
(1 + w
 )y槡

2

dy≈l + δ( x) ． ( 28)

式中，δ( x) 为分布位错，这样的近似相当于高估了起
浪高度． 将式( 27) 代入式( 28 ) ，并考虑到实际观察到
的冷轧带钢在失张状态下挠度沿轧制方向的变化较为

平缓，转角均远小于 45°，故式( 28) 可进一步化为
n2π2

2l2
f2 ( x) ∫

l

0
cos2 nπyl dy≈δ( x) ． ( 29)

对上式积分后整理得

f( x) ≈ ± 2l
nπ

δ( x)
槡l ． ( 30)

由于 l和 n 均为常数，故可由上式给出挠度函数
的形式

w( x，y) ≈ δ( x槡 ) sin
nπy
l ． ( 31)

为检验上述分析的合理性，对上文中提及的冷轧

厂某卷带钢进行跟踪，得到实测残余应力数据，并在其

进入连续退火炉前的入口活套处 ( 微张力状态) 观察

其起浪形态． 观察到的该横截面附近实际起浪形态如
图 5 所示，由式 ( 31 ) 所确定的挠度形式如图 6 所示．
可见其反映出带钢的中浪及单边浪，尤其是带钢具有

的较为复杂的“一高一低双峰”形式中浪，但是要确定
具体的起浪波高、波长等几何参数，还需进一步进而可
根据能量变分法、Галёркин 法、摄动法或直接分析大
挠度 von Kármán方程组来确定 l 和 n 等待定参数，对
其他分布位错附近可进行同样的分析，再适当考虑联

接条件，即可得到整个带钢的挠度．

图 5 带钢的实际浪形
Fig． 5 Actual wave of the strip steel

3 结论

( 1) 基于平面弹性复变方法，提出采用均匀各向
同性无限大平面粘接问题的数学模型研究冷轧带钢非

协调变形与残余应力的关系． 分布位错采用两端连续
光滑的局部四次曲线形式，由此计算得到的基本残余

图 6 计算所得挠度函数的形式
Fig． 6 Calculated form of the deflection function

应力不仅近似满足自平衡条件，还可以较好反映出带

钢的某些局部特性，如带钢肋部常见的拉应力尖峰，并

且具有很强的衰减性，方便进一步的数学处理．
( 2) 结合现场检测数据的特点，用带钢被检测处

作为带有分布位错的粘接边界，经分析忽略了彼此间

的影响，简化了对残余应力场的计算． 通过对检测数
据边值点和极值点的分析，将若干基本残余应力场经

平移、伸缩和叠加来逼近实际残余应力场，近似度
较高．
( 3) 计算了带钢在检测处的分布位错并分析了其

物理意义，对于冷轧带钢通常具有的 106 Pa数量级残
余应力而言，其分布位错的数量级为 10 －5 m． 另一方
面，根据冷轧薄带钢屈曲几何大变形的特点，忽略了面

内压缩作用，由此给出屈曲挠度函数的形式并与现场

实际观察到的浪形进行对比，发现其能够反映出带钢

复杂的起浪形式，为进一步基于变形体非协调理论的

后屈曲分析提供了基础．
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