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Carbothermic reduction kinetics of boron-bearing iron concentrate
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ABSTRACT In order to deeply understand the carbothermic reduction mechanism of boron-bearing iron concentrate the isothermal
reduction of boron-bearing iron concentrate/carbon composite pellets was performed with high purity graphite as a reductant and was
kinetically analyzed by the integration method. The reduction temperature was set as 1000 1050 1100 1150 1200 1250 and 1300
°C  and the C/0O molar ratio was 1. 0. When the reduction degree ranged from 0.1 to 0.8 the reduction temperature had important
effect on the apparent activation energy and rate controlling step. If the reduction temperature was not greater than 1100 °C  the aver—
age apparent activation energy was 202. 6kJ*mol ™' and the rate controlling step was carbon gasification. But if the reduction tempera—
ture was higher than 1100 °C  the average apparent activation energy was 116.7 kJ *mol™" and the reduction rate was the mixed
control of carbon gasification and FeO reduction reaction. When the reduction degree was not less than 0. 8 ( reduction temperature
>1100 °C) the reduction might be controlled by carbon diffusion in metallic iron. Carbon gasification is the main rate controlling step
for the reduction of the composite pellet due to the intense chemical inhibition effect of boron in the boron-bearing iron concentrate on
carbon gasification.
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Table 1 Chemical composition of the boron-bearing iron concentrate %
Bz 03 TFe MgO Sioz Alz 03 FeO CaO P S
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Fig.1 XRD pattern of the boron — bearing iron concentrate Fig.2 Particle size distribution of the boron-bearing iron concentrate
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Fig.3 TG curve of the roasted boron-bearing iron concentrate
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Fig.4 Schematic illustration of the experimental apparatus
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Fig.5 TG curves of the boron-bearing iron concentrate/graphite at

different heating rates
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Table 2 Calculated apparent activation energy

a 0. 05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
<1100 C /(kJemol =1) 144.0 186.2 201.4 201.4 203.7 206.5 214.1 188.3 203.0 154.5 177.7
=1150 C /(kJ*mol 1) 110.3  112.3 113.8 124.1 115.9 108.5 108.7 118.9 126.8 154.5 177.7
3

Table 3 Review of the activation energy and rate controlling step of carbothermic reduction

/C Ea/(kJ+mol ")
Otsuka Fe, 05 271.7 ( =0.2) ;
1050 ~ 1150
Kunii (-325 ) (-325 ) 62.7 ( =0.6) : FeO
Fe, 05
Rao ' ) 850 ~ 1087 301
( <1 pm) (=325 ) (8 ~13 mm)
Fe, 05 NN N
Fruehan 900 ~ 1200 293 ~334
( -200 ) (=200 ) (6 ~14 mm)
. 416.7 ( =0.2)
Srinivasan : :
925 ~ 1060 285.4 ( =0.6)
Lahiri '¢ (=300 ) (=300 ) (12 mm) . FeO
56.0 ( =0.8)
Fe,0,—Fe0: 295
Abraham Fe, 05 ( ) 305 ( )
. 880 ~ 1042
Ghosh 7 (=325 ) (200 ~230 ) FeO—Fe: 140 ( )
230 ( )
N . 158.8; N
Seaton 18 800 ~ 1200
(=325 ) (14 mm) :125.4~238.3
De Carvalho N
o 900 ~ 1200 117.100
(=270 ) (=270 ) (15 mm)
Dey 12 900 ~ 1050 30.3 ~44.2 —
’ (180~300 )  (180~300 ) (10 mm)
227.7
1 950 ~ 1200 294. 14
(200~325 )  (200~325 ) (30 mm)
391.26 ~411. 37
) . 1200 °C 0.8) 1100 C
: 1100 °C FeO
; a=0.8 (
>1100 °C)
. 6
FeO ( TA Q600)
MgO. SiO, .
FeO . B,0,.Fe,0, Mg,B, 0,
227.7kJ*mol ™'
Mg,B, 05 MgO B, 03
221.75 kJ * mol ' 1450 °C 60 min
5 62.7 ~56.0 kJ *mol ' 200 . co,
FeO CO FeO 60 mL*min ' 10 °C *min ",
69. 45 kJ*mol ™"; ( 2%)

( 0.1<acx
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Table 4 Effect of additives ( mass fraction 2% ) on the characteristic temperature of graphite gasification
Fe; 0, MgO Si0, B, 05 Mg, B, 05
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Fig.9 Effect of additives on the gasification of graphite
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