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Direct numerical simulation of inclusion floating and collision behavior in molten steel

using the lattice Boltzmann method
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ABSTRACT The floating and collision behavior of inclusions in the floating process was numerically simulated by using the Lattice
Boltzmann method. It is found that the floating velocity simulation results of different size inclusion particles are almost the same as the
theoretical value which demonstrates that the motion behavior of solid inclusion particles can be investigated concisely and effectively
by using the numerical algorithm adopted in this paper. When an inclusion particle with a diameter of 80 wm locates below an inclusion
particle with a diameter of 40 um and floats up at the same time the inclusion particle with a diameter of 80 wm can catch up with the
inclusion particle with a diameter of 80 wm collide with each other and grow up into a big inclusion cluster. When the inclusion parti—
cles with diameters of 80 pm and 40 pwm floats up separately the floating velocity of the inclusion cluster is bigger than them. For the
inclusion particle with a diameter of 40 um the floating velocity after collision with the bigger size inclusion particle increases by
300% compared with that of floating separately. In the steelmaking process it is necessary to take measures to enhance collision and
coagulation in the floating process which will improve the floating velocity of inclusions especially for small size inclusions and have a
great importance on the cleanliness of steel.
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Table 1 Physical properties of steel and Al, O; inclusion particles
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Fig.5 Velocity distribution in the Y — Z symmetry plane of the computational domain when different size inclusions stably floats: ( a) d =40 pm;
(b) d=80um
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Fig.8 Change in inclusion floating velocity with time under the con—

dition of floating lonely and collision in the floating process
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