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ABSTRACT A comprehensive effect of Al,O, content and binary basicity B on the enrichment behavior of phosphates in rapidly
quenched Ca0—Si0, —FeO—P, 05 —Fe, 0, —Al, O; steelmaking slags was investigated through thermodynamic calculations and experi—
mental determination. It is found that the determined mass percentage of P,0; in the phosphate-enriched phase nC,S—C,;P depends on
the forming of free C,S in the steelmaking slags and increasing the SiO, content can result in an obviously decreasing tendency of
formed C,S. Adding Al,O, as a dilute agent for decreasing the viscosity and melting point of the steelmaking slags can be easily bond-
ed with free C,S to form a gehlenite ( C,AS) solid solution. Thus adding Al,O; in the steelmaking slags can decrease the amount of
free C,S in the steelmaking slags which affects phosphate enrichment. In order to obtain a greater phosphate enrichment in the steel—
making slags a coupling relationship between the binary basicity B and the mass percentage of Al, O, in the initial steelmaking slags
should be kept as ( % Al,0,) = =-27.70 +21.62B under the conditions of ( Al,0;) <20.0% and the binary basicity B > 1. 3.
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Fig.2 Relationships of the mass percentage of Al, O3 from 0 to 30% against the calculated equilibrium amount of substance ng,as(a) or neys, (b)

for the CaO—Si0, —FeO—Fe, 0; =P, 05 —Al, O; steelmaking slags at 1673 K
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Table 3 Chemical composition of six slag samples and corresponding results from the EDAX analyzer
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Fig.6 SEM images and corresponding X-—ray mapping photos of No. 3 slag sample with the binary basicity B as 1. 7 and keeping ( Al,0;) as 10%.

(a) SEM images; (b) element Ca; (c) element P; (d) element Si; (e) element Fe; (f) element Al; (g) element O



. AlLO, . 675 ¢
40 - ; —C,S nC,S—C,P  (P,0,)
- (2) ALO, .8
30 |
< 7 ‘ C,AS C,S (—C,9)
;? | |
%; o ! nC,S—C,P
I
B 20f j : % Ca0
S, i [ P, 0 AL 0, B = W
o | i 2
1 1 CB
10f i | =
! \ L ) Al O,
1.2 1.6 2.0 2.4
4 4B, CB CB = _(%Ca0)
0.93( %Si0,) +0. 18( % ALO,)
7 CB 1.4~1.8
(P,05) (3) Ca0—Si0, —
Fig.7 Relationship between the complex basicity CB and the deter— FeO—P.0. —Fe. 0. —AL O
mined mass percentage of P,Os in the phosphate-enriched phase by > > : ; B 13 ALO
EDAX analysis in quenched steelmaking slags ( > 1.3) 23
((ALO,) < 20.0%) (% ALO,) =

P,0, B ALO,

(% AL,0,) = -27.70 +21. 62B ( AL,0,) <20.0%
B>1.3. (2)

20

(% ALO)=-27.70+21.62B

2 =
= st
0
1.2 1.4 1.6 1.8 2.0 22
LI, B
8 No.1.No.3 No.5 B (1.3~
2.0)  ALO, (0~15%)

Fig.8 Relationship between the binary basicity B from 1.3 to 2.0
and the mass percentage of Al,O; from 0 to 15% in quenched steel-

making slags

ALL0, B
Ca0—Si0, —FeO—P, 0, —Fe,0, —AL,0,

(1) C,S (1—C,S)

C,S

=27

10

.70 +21. 62B.

Sui ZT Zhang P X. Selective precipitating behavior of the boron
components from the boron slag. Acta Metall Sin 1997 33(9):
943
Wu X R LiLS DongY C. Influence of P,05 on crystallization
of V concentrating phase in V-bearing steelmaking slag. ISIJ Int
2007 47(3): 402
Zhang . Zhang LN Wang M Y et al. Dynamic oxidation of the
Ti-bearing blast furnace slag. ISIJ Int 2006 46(3) : 458
LiJY Zhang M Guo M et al. Enrichment mechanism of phos—
phate in Ca0—Si0, —FeO—Fe, 0; —P, Oy steelmaking slags. Metall
Mater Trans B 2014 45(5) : 1666
LiJY ZhangM Guo M et al. Phosphate enrichment mechanism
in Ca0—S8i0, —¥eO—Fe, 0; =P, 05 steelmaking slags with lower bi—
nary basicity. Int J Miner Metall Mater 2016 23(5): 520
Lin L Bao Y P Wang M et al. Influence of Al,O; modification
on phosphorus enrichment in P bearing steelmaking slag. Ironmak—
ing Steelmaking 2014 41(3): 193
Wang Z] SunY Q Sridhar S et al. Selective crystallization be—
havior of Ca0—Si0, —Al, 03 —MgO—Fe, O—P, O5 steelmaking slags
modified through P, Oy and Al,O;. Metall Mater Trans B 2015
46(5) : 2246
Venkatadri A’ S Srinivasan C R Gupta S K. Prediction ofsulfide
capacities of blast furnace slags. Sand J Metall 1989 18(2):
89
Zhang J. Computational Thermodynamics of Metallurgical Melts
and Solutions. Beijing: Metallurgical Industry Press 2007
Yang X M Duan J P Shi C B et al. A thermodynamic model
of phosphorus distribution ratio between Ca0—Si0, —MgO—FeO—
Fe, 0; —=MnO—Al, O; —P, O5 slags and molten steel during a top—

bottom combined blown converter steelmaking process based on



* 676

38 5

11

12

13

the ion and molecule coexistence theory. Metall Mater Trans B
2011 42(4): 738

Yang X M Shi CB Zhang M et al. A thermodynamic model of
phosphate capacity for CaO—Si0, —MgO—FeO—Fe,0; —MnO—
Al,O0; —P, 0y slags equilibrated with molten steel during a top—
bottom combined blown converter steelmaking process based on
the ion and molecule coexistence theory. Metall Mater Trans B
2011 42(5): 951

Pelton A D Degterov S A Eriksson G et al. The modified qua—
sichemical model: 1.
2000 31(4): 651
Pelton A D Chartrand P. The modified quasi—chemical model:

Binary solutions. Metall Mater Trans B

14

15

Part II. Multicomponent solutions. Metall Mater Trans A 2001
32(6): 1355
Kondratiev A Jak E. A quasi-chemical viscosity model for fully
liquid slags in the Al,0; —CaO— ‘FeO’ —Si0, system. Metall
Mater Trans B 2005 36(5): 623
Verein Deutscher Eisenhiittenleute. Slag Atlas. 2nd Ed. Abing—
ton: Woodhead Publishing Limited 1995
Chen J X. Handbook of Common Figures Tables and Data for
Steelmaking. 2nd Ed. Beijing: Metallurgical Industry Press
2010
( . .2

2010)



