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Analysis and compensation of stray parameters in high-voltage pulse generator circuits
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ABSTRACT In a pulse generator circuit the output and stability of the system are affected by stray parameters. In order to improve
the quality of the output waveform restrain the oscillation of the output and ensure components long-term reliable operation it is nec—
essary to analyze and compensate stray parameters in the pulse generator circuit. Through analyzing the actual waveform of the output
a stray parameter module for the pulse generator circuit and a new method to analyze and compensate stray parameters in the pulse gen—
erator circuit are introduced in this paper. Simulation results reflect the actual waveform accurately and no overshoot of the output is a—
chieved after joining the compensation circuit.

KEY WORDS pulse generators, parameters; compensation; circuit analysis

12 3 4
5 6
( insulated gate . 7-12 ;
bipolar transistor IGBT) 7 - 13
( metal—oxide-semiconductor field-effect tran—
sistor MOSFET) * . ! ; 14
1 2015-06—17

(2012BAI14BO01) ; ( 14JCQNJC04600)



* 735 -

e B /A V

IGBT

U, R u(t) . RLC

3
O -
U, S R u(t)
R, L, C, n L,
1 L, L, c, C,
Fig.1 Structure diagram of the pulse circuit - C R, R,
N R, u, (1)
14 u, (1) w, (1) ¢ G C,.
i(1) i,(1) i, 1) L L, L,
i/(t) i;(¢) i, (1) ¢ G
C .
13 ( 30 cm)
1
2 2 4
L5t B sl pi
1O} &
' &
L m 1.0OF
0.5 =
0.0 B 05+
#
-0.5¢ 0 1 ! 1 1 | L =il 1
0.000400 0 05 10 15 20 25 30 35 40 45
A fE}/10 s
z 18 ()
&= 1.0f
= 0.5
g 0.0
-0.5¢ L L L L
6.960 7.154 7.384 7.542 7.736 7.930

i [a)/107° s

B2 ARMESEPREEIE. (a) SERIEIE; (b) BHOTFEIE: (o) RHFIE

Fig.2 Voltage waveforms of loads: (a) full wave; (b) high level wave; (c¢) low level wave
(=) t"



- 736 ¢ 38 5
r_‘___—']___—: L, R, L, R.
VY AAN Y YALNAAA —— ¢ 0 0 =YY AAA ——
M—TOAM AT
i\ (1) i,’(/,w I it) i;uﬂ i () i,’Hl/)¢ 109
-------- =1 : s s o
ul(l)lu u,([):L_: u, (1) :&H ¢'>u(”
| N o+
----------- | Y, S — Y T
| : R ult)
_________ m e
3
Fig.3 Structure diagram of the circuit with stray parameters in the distribution parameter model
LL, C 1
Vi U, S R 1 (3) (s=—s)
u(e). L, L
(b ke (s=-gw, xw, /1) ¢
Cc u, (¢t C
: 1 (4) ! 0<¢<l1. 1
K
L(s) = . (4)
() s(s+s,) (87 +20w,s +w’)
Uy
K —
L,L,C,
-2
(i’=-1)
. K - (g, -, JSTD
(1) =—— 1 +Age ™ +Ae Fuin/I=00y
w,So
Aze = (gw, +jw, /1=-0)t ) ( 5)

Fig.4 Structure diagram of the circuit with stray parameters in the

lumped parameter model

2

2.1

(

4 S
di, (1)
Bl/() :Ll dt +u1(t)
g diy( )
Ehl(t) =L, dz +L2( 1) R (1)
Ekl(z) =1,( 1) +iy(1)
du
(o =

1)

(2)

12(5)

(3)

Uy('s) :Llszll(s) +sU,('s)

Ul(s) =L23]2(5) +[2(S)R (2)
I1,(s) =1L,(s) +CsU/(s).
s
U,
=LL C s 3 2 - (3)
L,Cs"+L,CRs +(L, +L,)s +Rs

U, R

2
-w,

0= 2 2
s = 20w, sy +w,

2

s 28w, =sy) = sy (287w, = gsy —w,) /1 =¢
L2 (20w, — sy —w,) P+ (28w, - s,) P(1 =)

_ so( 20w, —sy) +so( 280w, =&sy —w,) / /1 =
P2 (28w, ~ g5y —w,) "+ (20w, —s5,) *(1-0)

(3) (4)
SL£:2£W"+SO
2
B, +L
SL%CZ =w +20w,s, (6)
1721
B R _.-
dz e T
n _R( 20w +4 7 sgw, +24s0)
0" =7 sy (24w, +5)
H R
20, v, )

( 2§w11 + So) :
Rw, (20w, +40 s,w, +2{s,)

=

I:EDI:I

dw,

So



- 737 -

2.2

N

(98]

9

I}
OmMmoOoooOoooodgodg
=)

O
—

=S
VAN

=

‘“h

2

—== ____7
gu. /1-¢
¥, = 10w, (8)
0
ol _,
Ug
k 5%
S
1
DDif(t) 0o il g
(O Gy D
00 " 0O=A40 " ° O+BU,
BB BH )
BDL’,,’( nd (0O
Lk, (1) =Ri (1)
1 O
-— 0 0
L, O
1 = ol o
= 0
O Cl O D DL1|:|
0 0, O
1R O0p-0°0
Lz Lz O |:|0|:|
19 pig
“¢cY oo
nD
1 _RH
0 L, L 0O
S
U
L(s) = - (10)

G (s) =(L,Cs +RCis+1)(L,C,s" +R,Cps +1) -+

G,(s) =s L, LC _s+(R, _LC

( LWZCPZSZ +R, ,C, ,s+1)

nn- €, +R) s+

(L, ,+RR,_,C, ,+L)s+R,  +R .

R

G(s)

TLLCs +LCRS +(L, +L)s+R

KR/U,

(s+s,) (s° +20w,s +w’)

(11)

l/()

G(s) 1 » U,

5

Fig.5 Block diagram of the transfer function with compensation

G1s)
. s+ 2fw,s + wi
G(s) =5 > (12)
ST +20w,s +w,
=1
G.(s)
6.0 = 6(3) 61) = it
A ETE _(s+so)(sz+2{’wns+wi)'
(13)
6
u;( 1) (1)
(2)
s+ &s + L
1) L, L,C, (14)
5) =
E R R,C,+L, R, +R,
R,L;C, R,L;C,
8 I
oo 0 VY
UOCD V.
6
Fig. 6  Pulse circuit with compensation in the lumped parameter
model
3.2
5
7
L\R; C; n
u,( 1)
7



* 738 - 38 5

7

Fig.7 Pulse circuit with compensation in the distribution parameter model
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