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Formation mechanism of oversized DS-type inclusions in low oxygen special steel
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ABSTRACT To investigate the generation mechanism of oversized DS-ype inclusions in low oxygen special steel a comparative
analysis of inclusions was performed on overseas and domestic special steel samples by the automatic secondary electron microscopy
ASPEX PSEM explorer. Both the average size and maximum size of inclusions are larger in domestic samples than overseas samples.
Particularly the maximum size of inclusions in domestic samples is several times that in overseas steel samples: 24.9 and 13. 1 pm in
domestic samples and 7. 6 and 7. 5 pm in overseas samples respectively. Based on the chemical composition analysis of inclusions in
domestic samples it is found that the oversized inclusions and smaller inclusions have similar compositions. Therefore the detected
DS-type inclusions are endogenous but not exogenous which can be produced by collisions among inclusion particles. To further study
the possible origins of the oversized DS-type inclusions in-situ observation on the behaviors of inclusions at the solid/liquid interface
in low oxygen special steel show that tiny inclusions less than 5 um can be easily and stably captured by the solid/liquid interface with
a total oxygen content of 7 x 10 . Moreover collisions agglomeration/coalescence and growth of inclusions captured by the solid/
liquid interface result in the formation of much larger size DS-type inclusions over 12 pm.

KEY WORDS special steel; inclusions; size; formation mechanisms

4-6

1 20150624
51304013) ; (2010CB630806)



=781 -

DS
Al .
(T.0) (
T.0 2y, A
6x107° 7 2 B A B.
Si—Mn N N N
8
: ( ( )
! T.0 6x107° C0.41% Si1.46% Mn0.84 Cr0.17% S 0.0005%
. ( Al,0,—MgO) A1 0.036% T. 0 0.0007%)
( CaO—MgO—AL, 0,) —CaS v
ASTM E-2005 ¢4 mm x2 mm
’ . D :
GB/T10561—2005 "
12 pm DS B
T. 0 . 2.5Kes™! 1173 K
. DS 60 s 1.6 Kes™ 1748 K
0.5 ( <13 pum) " 300s 1768 K.
DS 10Kes™ 1673 K 1.6 Kes™'
1.0 (<19 pum) 1.0
4.0 "
DS 3 min
60 mL*min ™'
. . ALO,—
MgO 7 DS 15 5™
N N N ASPEX PSEM explorer
DS .
2
2.1
DS
. 1
DS 2.8 2.6um
ASPEX 2.1 1.6 pm.
. : 24.92
13.1 pm 7.6
7.5 pm.
. . DS 2
1 10 pm 10 pm
25 um. Ca.Mg. Al. Si

ASPEX PSEM explorer ( FEI Co. Litd.)



782 - 38
301
25 22 BT
N S AR
20}

g
2
+ 157 13.1
%4

10F 76 75

0 1 L 1 |
FPAEAEA A [EAMAFEA  [[SMARER
AR S
1
Fig.1 Comparison of the average size and maximum size of inclu— 2
sions in domestic and overseas samples Fig.2 Comparison of the chemical composition of large and small in—
clusions
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Fig.3 Solid/liquid interfaces formed during in-situ observation: (a) 1205.7s; (b) 1214.9s; (c) 1245.5s; (d) 1268.1s
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Fig.4 Collision of inclusions at solid/liquid interfaces: (a) 2289.9s; (b) 2290.5s; (c) 2292.3s
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Fig.5 Collision agglomeration growth and self — densification of inclusions at solid/liquid interfaces: (a) 3521.3s; (b) 3524.3s; (c) 3527.1
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Fig.6 Typical inclusion in the steel sample before in-situ observation
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Fig.7 Typical inclusion in the steel sample after in-situ observation
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