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Hot ductility and fracture mechanism of Fe—22Mn—0. 7C TWIP steel
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ABSTRACT The static tensile behaviors of Fe—22Mn—0. 7C TWIP steel and Q235 steel between 700 °C and 1300 °C were investiga—

ted by Gleebled500 thermo-mechanical simulator. The microstructure characteristic and fracture morphology were observed by optical

microscopy scanning electron microscopy energy dispersive spectrometry and electron probe micro-analysis. The hot ductility and

influenced mechanism were revealed based on the discussion of chemical composition matrix phase volume fraction grain size and

solidification defects. It is found that the TWIP steel has a reduction in area lower than 40% in the temperature range of 700 C to

1250 °C  but its tensile strength is higher than that of Q235 steel. Fractographic results manifest intergranular fracture for the TWIP

steel. Grain refinement and microsegregation descending in the TWIP steel are beneficial to increasing the hot ductility due to the

improvement of matrix homogeneity. Besides the tensile strength and reduction in area of the TWIP steel increase with increasing

strain rate.
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Table 1 Chemical composition of specimens for high temperature tensile test %
C Mn Si P S Al 0 N Fe
TWIP Fe—22Mn—0. 7C 0.73 22.03 0.17 0.0056  0.0060  <0.005 1.5x107* 6x10~*
Q235 Fe=0.7Mn—0.1C  0.15 0.71 — — — — — —
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Fig.1 Schemes of high temperature tensile test: (a) <1200°C; (b) >1200C
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Fig.2 True stress—strain curves of specimens at different temperatures: (a) TWIP steel; (b) Q235 steel
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Fig.3 Thermal tensile performance of specimens: ( a) tensile strength; (b) reduction in area
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Fig.4 Phase volume fraction curves of the two steels: (a) Q235 steel; (b) TWIP steel
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Fig.5 Fracture morphologies of the Q235 specimen: (a b) 1000°C; (¢ d) 850°C
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Fig.6 Fracture morphologies of staticallytested TWIP steel at 1100 °C
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Fig.7 Deformation feature of the staticallytested TWIP steel at 1100 °C: ( a) near fracture; (b) fracture
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Fig.8 Fracture morphology of the statically — tested TWIP steel at 900 °C
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Fig.9 Deformation feature of the statically-tested TWIP steel at 850 °C: (a) near fracture; (b) fracture
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Fig.10  Grain morphology of the TWIP steel by optical microscopy: ( a) as-cast; (b) as-forged
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Fig.11 Mn microsegregation in the TWIP steel by electron probe micro-analysis: ( a) as-east; (b) as-forged
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Fig.12 Tensile performance of the TWIP steel: ( a) tensile strength; (b) reduction in area
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Fig.13 Tensile performance of the TWIP steel at different strain rates: (a) strength; (b) reduction in area
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Fig. 14  Fracture morphology of TWIP steel at high strain rate ( a) and EDS spectrum of an inclusion ( b)
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