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Indentation effect on the fatigue limit of axle steel
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ABSTRACT A hardness tester was used to make indentations on the hourglass fatigue specimens of axle steel and notches were
machined by electronic discharge machining ( EDM) . The fatigue limits of both indentation specimens and notched ones were exam—
ined and compared with the theoretical values according to the Murakami formula based on material hardness and defect projected area.

The fracture surface was observed by scanning electron microscopy. It is found that local work hardening and residual stress caused by
plastic deformation of indentations have no significant effect on the fatigue limits in comparison with the predicted values by the
Murakami equation. Fatigue cracks originate from the bottom of indentations due to stress concentration effect. The fatigue limits of
notched specimens are lower than the calculated values because of secondary notches caused by the high roughness of notch surfaces
and the existence of microcracks and micropores within the re-cast layers. Cracks initiate from multiple sites on the bottom of electronic
discharge machining notches.

KEY WORDS axle steel; fatigue behavior; indentation; notches; siress concentration

i 80%

: 2015-06—16
( P201540)



- 828 - 38 6

24
> % Beretta 7" EAIN
2
1
Murakami
Murakami 12
1
Beretta 1014 S38C
. 1 2.
1. 20 LZ50 . {GB/T 3075—2008
15-16
»
2( a)
N 2(b). HBE-3000
1. 5875 mm ( VK-9710K)
2( ¢)
1 $38C ( )

Table 1 Chemical composition of S38C steel %

C Si Mn P S Cr Mo Ni Al

0.39 0.29 0.81 0.008 0.006 0.097 0.024 0.039 0.013

1 2 2 S38C

Table 2 Mechanical properties of S38C steel

Fig.1 Ballast impact indentation as a crack initiation site 2

/MPa /MPa /% HV

635 330 23 200

2 . (a) (mm) ; (b) (c) ;(d)

Fig.2 Specimens and defects: ( a) drawing of specimens ( unit mm) ; ( b) specimen; ( c) indentation; ( d) EDM notch
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Table 3 Indentation and notch size of specimens
( GPS—
/pm /pm /mm?
: ID1 115 1590 0. 0628
(1) Tw D2 170 1590 0. 1051
i=1~n/2.
D3 225 1590 0. 1587
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D4 280 1590 0.2185
EN1 100 500 0.0272
EN2 200 1600 0. 1339
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Fig.3 Cross-sectional microstructures around indentations: (a) ID1; (b) ID2; (c) ID3; (d) ID4
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Fig. 6 Typical fracture surface of a smooth specimen: ( a) fracture surface; ( b) crack initiation site; ( c) crack propagation zone; ( d) fracture zone

7 - (a) 1 (b) ()
Fig.7 Typical fracture surface of an indentation specimen: ( a) fracture surface; ( b) crack initiation site; ( c¢) crack propagation around the indenta—

tion

8 (a) i (b) (¢

Fig.8 Typical crack propagation process of an indentation specimen: ( a) crack initiation; ( b) crack growth; (¢) fracture
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Fig.9 Typical fracture surface of a notched specimen: ( a) fracture surface; ( b) crack initiation sites at the bottom of the notch; ( ¢) secondary

notch
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