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Analysis on the fracture failure in crack interaction of mortar using the phasefield
method
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ABSTRACT This article introduces a new mortar fracture analysis method based on the phasefield method which is used to analyze
the fracture failure in crack interaction of mortar. The non-conserved Allen—Cahn equation was adopted as the system governing equa—
tion to study the crack development and interaction in mortar. Both the linear elasticity and phase-field equations were solved in a uni-
fied finite element frame work which was implemented in the commercial software COMSOL. Direct tension test and three-point ben—
ding test were performed for validation. It is discovered that the critical load of crack interaction by the phase-field method agrees very
well with the experimental results. Research results show that Mode ]I specimen tends to have a longer crack path.
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Fig.1 Integration contour in crack interaction

FE DC
JOHG) = J(BA) =0
(14) (15)
Jr,) =Jr,) +Jr,. (15)
Jr,) J J(r,)
r, J J(T,) r, J
e
J(I,) =JT cosa —J; sinq. (16)
Bo=§ (fdy =T, dv) (17)
L= (=fudy =Tl ugyd)  (18)
: oy
2.2
COMSOL, 2
L=0.1m £ =0.0001
m 0.05m 0.025m
1
W =0.005m Ax—%W
31768
o(t) =k k=2.5x10
Nem?es™'. 3 0.0.08.0.55 0.60s

: y=219]*m™’ E=
26.4 GPa. 3

2

Fig.2 Finite element mesh of the crack interaction model
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3 . (a) Os; (b) 0.08s; (c) 0.55s; (d) 0.60s
Fig.3 Crack interaction process at different time instants: (a) Os; (b) 0.08s; (c¢) 0.55s; (d) 0.60s
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Fig.4 Mortar cracking tests: ( a) three-point bending test; (b) direct tension test
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1

Table 1 Properties of Portland cement used for mortar specimen

/ / /min

(geem™3) (m?kg™!) /% /mm

3.14 350 25.0 0.5 172 222
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Fig.5 Grain size distribution
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Table 2 Comparison between three-point bending test and PFM simula—

tion of mortar specimens

/ P/N

mm /mm

40 10.0 1373.8 1398.0
40 12.5 1127.2 1156.2
40 15.0 996. 8 1002. 3
40 17.5 766. 0 785. 1
40 20.0 628.5 654.7
20 10.0 632.8 636.9
20 12.5 530.5 541.3
20 15.0 463.5 471.17
20 17.5 386. 1 366. 4
20 20.0 298.5 287.3

10 mm 10 mm 7
40 mm.

; (b)

Fig.6 Mode [ specimen: (a) before failure; (b) after failure
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Fig.7 Mode II specimen: (a) before failure; (b) after failure
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I I - PFM

Fig.8 Comparison between PFM simulation and test results of Mode

I and Mode II specimens in direct tension test
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