

轮胎与沥青路面微观摩擦接触特性的分子动力学模拟

孙凤艳, 黄璐, 汪林兵[✉]

北京科技大学国家材料服役安全科学中心, 北京 100083

[✉]通信作者, E-mail: lbwang@ustb.edu.cn

摘要 为了精确表征轮胎与路面微观摩擦接触特性及分子作用力效应, 利用分子动力学模拟分析方法建立轮胎(聚异戊二烯)和集料(二氧化硅)三维单体模型和界面接触模型, 在纳米尺度上研究轮胎和集料的微观构造和接触特性。模拟结果表明: 链状聚异戊二烯分子链为螺旋状结构, 分子间隙较大, 易产生较大变形, 而二氧化硅则为典型脆性材料, 表面较为平整; 界面接触模型以二氧化硅为固定基底, 聚异戊二烯单链在其上匀速滑动, 二者间距离为 0.5 nm。接触界面摩擦特性模拟结果表明摩擦系数随着速度增加而变小, 其变化趋势与实验结果相同, 证明模拟结果有效。

关键词 轮胎; 沥青路面; 摩擦; 接触; 分子动力学模拟

分类号 TQ330.7⁺3

Molecular dynamics simulation of micro frictional contact characteristics between tires and asphalt pavement

SUN Feng-yan, HUANG Lu, WANG Lin-bing[✉]

National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China

[✉] Corresponding author, E-mail: lbwang@ustb.edu.cn

ABSTRACT To accurately capture micro frictional contact characteristics and intermolecular forces between tires and pavement, the three-dimensional monomer models and the interface contact model of tires represented by isoprene and aggregates represented by silica were established by the molecular dynamics method. The microscopic structure and tire-aggregate contact properties were studied in nanoscale. Simulation results show that polyisoprene molecular chain is in the spiral structure with big molecular gaps, and is easy to generate large deformation under external loading. Conversely, silica is brittle with relatively flat surfaces. In the tire-pavement contact model, silica is the fixed base, and the single-chain polyisoprene is sliding on the top of the silica base at a constant velocity. The surface distance between the silica base and the single-chain polyisoprene is 0.5 nm. Simulation results of tire-pavement contact show that the friction coefficient decreases with the increase of sliding velocity, and the relationship between the friction coefficient and sliding velocity shows good agreement with test results, indicating that molecular dynamics simulation is capable to predict the tire-pavement frictional contact characteristics.

KEY WORDS tires; asphalt pavement; friction; contact; molecular dynamics simulation

沥青路面是我国道路工程中使用最为广泛的路面类型。据交通运输部公布的数据: 截至 2009 年 6 月, 我国高速公路通车里程达 7.5 万 km, 其中 90% 以上采

用沥青路面^[1]。车辆行驶过程中, 轮胎与沥青路面接触界面所产生的摩擦力是控制行车轨迹与速度的本源, 高速公路通常要求具有较好的抗滑性能(即摩擦

性能),这样雨天高速行车、紧急制动、突然启动、爬坡和转弯时,车轮才不容易产生空转或打滑,导致严重的交通事故。我国公路发展历程不长,对于路面抗滑性能基本原理认识不足,通车后路面抗滑性能随着车辆磨耗衰减很快。

国际道路协会根据道路表面构造的平面尺寸和构造深度,将其分为微观构造、宏观构造、粗大构造和不平整度构造四类,这种分类方法被广泛认可和接受^[2]。在路面构造对沥青路面抗滑性能影响的研究中,研究者大多认为微观构造影响轮胎与路面的实际接触面积,决定了路面摩擦力的大小,是影响各种车速情况下路面抗滑性能的主要因素,基本确定了路面的抗滑水平^[3-5]。微观构造主要指沥青胶浆和集料表面的微小构造,由胶浆和集料的材料特性和加工方式决定,受到交通和自然环境的影响^[6-7]。各种影响因素具有复杂的关联性,现有的微观尺度分析方法将微观构造尺度范围定义在微米级尺度,实际上难以精确表征微观构造的复杂形貌特征及纳米尺度的分子作用力效应。采用纳米尺度模拟方法则可以在原子及分子尺度上对材料进行物理、化学和热力学耦合分析,从而揭示结构内部构造和响应规律,并预测宏观响应和破坏行为。近年来,鉴于纳米尺度模拟方法在材料行为模拟方面的突出优越性,此方法已经开始应用于路面材料微观构造研究^[8-9]。因此本研究主要在纳米尺度上研究轮胎和集料的微观构造和表面特性,建立轮胎和集料三维单体模拟和整体接触模型,解析胎/路接触界面在摩擦接触过程中分子间相互作用,为沥青路面抗滑性能及演化机理研究奠定基础。

1 轮胎与集料微观表面特性分析

1.1 轮胎微观表面特性模拟分析

轮胎的主要成分为橡胶,属于凝聚态聚合物。对于轮胎的微观表面构造,由于轮胎上的纹路尺度比较大,纳米尺度时可以简化为轮胎主要成分橡胶的分子结构。

碳氢橡胶聚合物是一类重要的碳键聚合物,它们的通式是 $-\text{CH}_2-\text{CH}=\text{CR}-\text{CH}_2-$,都含有 $-\text{CH}_2-\text{CH}=\text{CR}-\text{CH}_2-$ 重复单元,式中R是侧基,可以为任何基团,当R为 CH_3 时,是聚异戊二烯——天然橡胶。当n=1时,则是天然橡胶的最基本单元 $\text{CH}_2=\text{CH}-\text{CR}=\text{CH}_2$,即异戊二烯,其中R为甲基。轮胎橡胶的成分非常复杂,不仅有碳氢两种原子,还含有氧、硫等其他原子。为了简化轮胎组成,降低模拟难度,忽略除碳氢以外的杂原子,假设橡胶组成成分单一,即异戊二烯。利用Materials Studio软件建立异戊二烯分子结构模型,如图1所示。其中白色小球为H原子,黑色小球为C原子。由图可知碳碳键长为0.11540

nm,碳氢键长为0.1140 nm,碳碳键角约为119°。

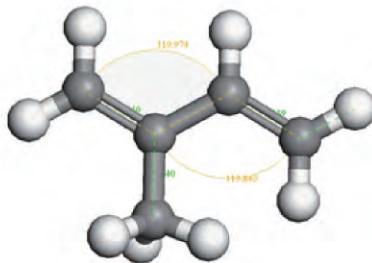


图1 异戊二烯分子结构

Fig. 1 Molecular structure of isoprene

橡胶属于凝聚态聚合物,聚合物分子内都是由共价键构成,而分子间作用力一般为范德华力,它包括色散力、诱导力、偶极矩等。聚合物主要为锯齿状微晶胞和折叠链构成。无论聚合物以哪种方式凝聚成固态,其相对分子质量都高达数百万或者更大。由于模拟分子数目的限制,本研究假定聚异戊二烯为最简单的链状结构,即单链的聚异戊二烯,由多个异戊二烯分子所构成,如图2所示。

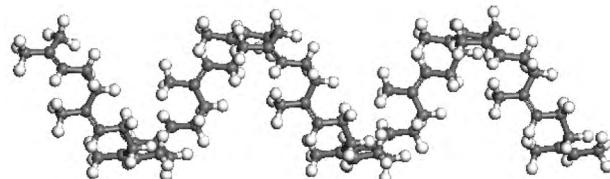


图2 单链聚异戊二烯分子结构

Fig. 2 Molecular structure of single-chain polyisoprene

从模型中可以看出,链状的聚异戊二烯分子以螺旋的结构聚合在一起,并不真正的直线状态。这种螺旋状聚合物与二氧化硅接触中产生的接触势能和简单晶体所产生的接触势能会有差异。因为在摩擦过程中,靠近集料的原子所受到的力较大,远离集料的原子所受力较小。当聚合物受到压力的作用时,螺旋状的分子结构间隙大,易产生较大的变形。

1.2 集料微观表面特性模拟分析

集料是用于配制沥青混凝土的碎石等颗粒状松散材料,也称骨料。现今路面上所用的集料大多数由花岗岩及鹅卵石组成。我国花岗岩化学成分(质量分数)如下所示: SiO_2 71.63%, Al_2O_3 14.00%, K_2O 4.09%, Na_2O 3.62%, FeO 1.75%, CaO 1.73%, Fe_2O_3 1.28%, MgO 0.88%, TiO_2 0.29%, P_2O_5 0.09%, MnO 0.06%, CO_2 0.58%。不同品种的矿物成分不尽相同,但是其主要成分为二氧化硅,部分品种的花岗岩的二氧化硅成分高达80%以上;鹅卵石作为一种纯天然的石材,主要化学成分是二氧化硅,其次是少量的氧化铁和微量的锰、铜、铝、镁等元素及化合物。所以集料主要是由二氧化硅组成。

利用Materials Studio软件建立二氧化硅的三维晶

体结构和超晶胞结构模型。图3所示为二氧化硅的晶体结构。图中红色为氧原子,黄色为硅原子。其晶格参数为 $\alpha = \beta = \gamma = 90^\circ$, $a = 0.4978 \text{ nm}$, $b = 0.4978 \text{ nm}$, $c = 0.6948 \text{ nm}$ 。图4所示为二氧化硅在 x 、 y 和 z 方向上重复4、12和4个单元的晶体结构图。

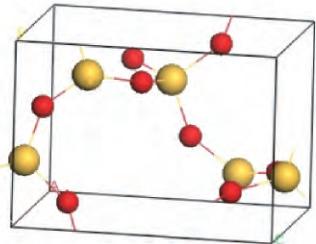


图3 二氧化硅的晶体结构

Fig. 3 Crystal structure of silica

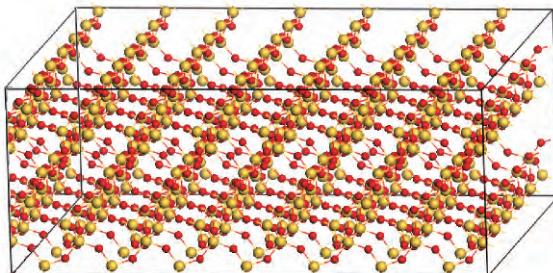


图4 二氧化硅的多晶结构

Fig. 4 Polycrystalline structure of silica

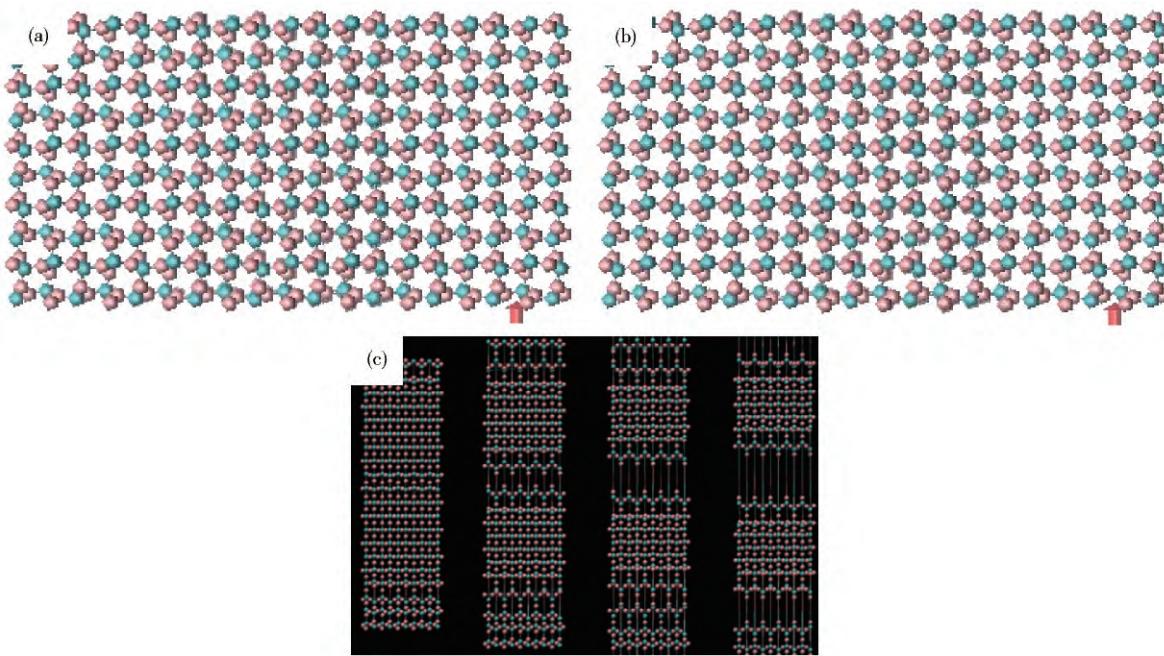
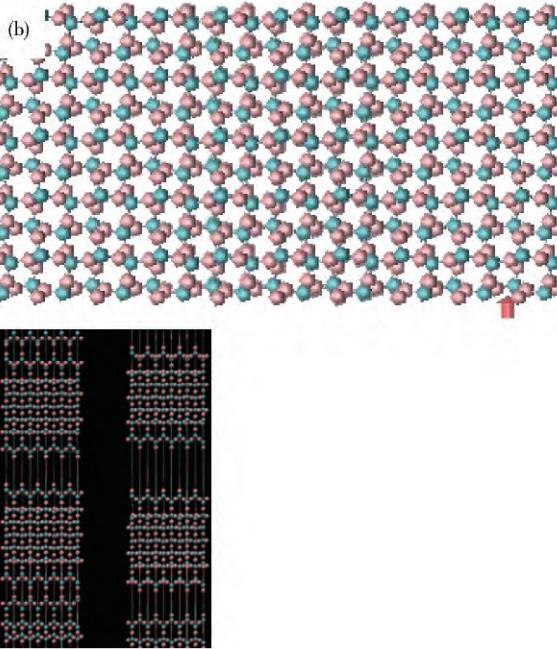
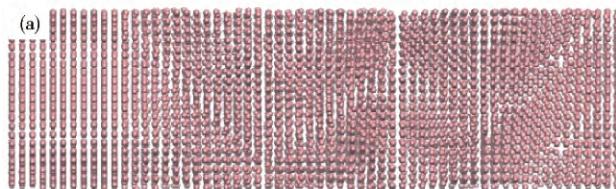


图5 二氧化硅拉伸过程图。(a) 能量最小化; (b) 弛豫; (c) 拉伸动态效果


Fig. 5 Stretching process of silica: (a) energy minimization; (b) relaxation; (c) dynamic effect of stretch

为了更好地分析脆性材料的表面特性,引入金属材料铜进行对比分析,如图6所示。铜原子为面心立方结构,晶格常数为 0.3615 nm 。铜原子多晶结构由

受实验条件所限,集料在纳米尺度上的微观表面构造并不能很好地进行观测。而沥青路面材料中集料基本上是由岩石人工破碎而形成的,其表面应该是较大石块破碎而形成的断面。因此模拟了集料加工破碎过程,以对其微观表面形貌进行较为直观的预测。为了简化模拟过程,将其破碎过程简化为拉伸过程,即对较大的晶体结构进行拉伸模拟。


分子动力学模拟过程主要分为四大部分。首先在温度 0 K 时进行精度为 10^{-6} 的能量最小化。由于考虑到需要避免温度的影响,所以系统温度设定为近似接近绝对零度的温度下—— 1.0 K 弛豫。系统弛豫时采用的是NVE系综,并使用速度法直接控制温度,即直接改变原子的运动速度,从而改变该原子的温度。经过每1000步0.2的变形速度在 y 方向进行拉伸,运行300000步后的拉伸过程,模拟过程如图5所示。

由图5可见,在微观上集料的主要成分二氧化硅在外力作用下,如拉伸,仅产生很小的变形就会破坏断裂。如图5(c)所示二氧化硅的在产生很小的变形拉伸时,就已经在边界处产生小裂纹,并在中间部分产生不明显的小裂纹。这些都很好地展现脆性材料的特性,弹性模量很高,脆而硬变形量很小,只要有变形就一定产生裂纹。并且在整个拉伸过程当中断面平整,易形成多条裂纹的扩展破坏模式,最终导致平整断面的小碎块的产生。

$30 \times 10 \times 10$ 个晶胞构成。铜原子在拉伸过程中首先会有一个断裂前的弹性变形,到达屈服极限以后才会开始断裂,并且明显看见断面不平整有若干个小突起,断

裂纹较少,图中显示只有一条裂纹。这与二氧化硅模拟结果不同,更能突出二氧化硅的断面平整性,不会

有金属材料断面的凸起。

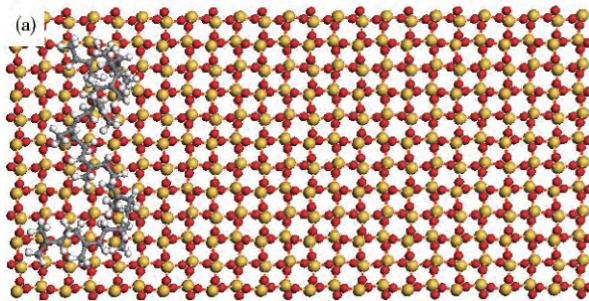

图6 铜原子拉伸过程图。(a) 拉伸至一半;(b) 拉伸后

Fig. 6 Stretching process of copper atoms: (a) half of the tensile; (b) after the tensile

2 轮胎与路面接触模型的建立

2.1 接触模型基底的确定

以二氧化硅为基底,建立轮胎与路面接触模型如图7所示。异戊二烯结构为单链10个分子聚合而成的

异戊二烯链,位于二氧化硅基地之上。二氧化硅单个晶体参数为 $a = 0.4978 \text{ nm}$ $b = 0.4978 \text{ nm}$ $c = 0.6948 \text{ nm}$, $\alpha = \beta = \gamma = 90^\circ$ 。二氧化硅基底为 [6 12 2] 重复晶胞,其晶格参数为 $a = 2.9868 \text{ nm}$ $b = 5.9736 \text{ nm}$ $c = 1.3896 \text{ nm}$, $\alpha = \beta = \gamma = 90^\circ$ 。

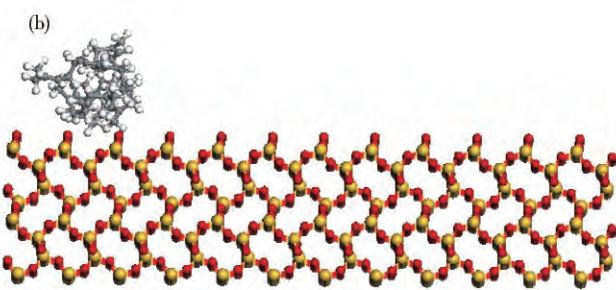


图7 三维接触模型。(a) 俯视图;(b) 主视图

Fig. 7 Three-dimensional contact model. (a) vertical view; (b) main view

2.2 轮胎与集料距离的确定

确定以二氧化硅为基底单链聚异戊二烯为表面的模型以后,最终模型还需要确定异戊二烯与二氧化硅的距离,所以对一系列不同距离下二氧化硅与异戊二烯的模型进行简单摩擦模拟。该模拟最初确定使用的是三维周期性边界条件。为了确定聚异戊二烯与二氧化硅之间的距离,首先选用了一组距离分别为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9和1.0 nm在常温300 K下的对比模拟,根据最稳定位置确定两者之间的距离。

表1为不同距离模型初始能量值。表中可以看出在距离为0.3 nm时模型能量较低为-2539.1773 eV,能量最小化仅需要168步数,弛豫平衡步数仅需要1000步,因此距离为0.3 nm时模型最稳定。模拟中需要模拟从较远处开始慢慢接近加压的过程,所以模型最稳定0.3 nm距离需要留有一定的富裕量,并且为了减少模拟计算步数也不能模拟从无限远处接近,最终决定能量较小并且弛豫步数较少的距离——0.5 nm。即确定轮胎与路面的接触模型为以二氧化硅为基底,在[001]方向上距离0.5 nm的单链聚异戊二烯模型。

表1 不同距离模型能量值

Table 1 Energy values of the models with different distances

距离/ nm	初始 能量/eV	能量最小化		弛豫平衡 步数
		步数	步数	
0.1	-2538.9057	201		7000
0.2	-2539.5073	195		7000
0.3	-2539.1773	168		1000
0.4	-2539.0217	172		8000
0.5	-2538.9516	179		3000
0.6	-2538.9084	185		4000
0.7	-2538.8833	195		3000
0.8	-2538.8682	197		6000
0.9	-2538.859	181		5000
1.0	-2538.8619	211		6000

将Materials Studio中建立好的二氧化硅基底和链状异戊二烯复制到一个视图中,然后放置好异戊二烯的位置,因为下一步还需要在y方向上摩擦,所以异戊二烯在y方向的坐标尽可能小,但也不能超出二氧化硅基底,以便模拟盒子大小的设置。确定了y方向的距离还需要确定与二氧化硅之间的距离。使用Materi-

als Studio 中原子坐标功能, 找出在二氧化硅基底中 z 方向上最大值以及异戊二烯分子中的最小值, 使用原子移动功能将这两个值之差调至 0.5 nm, 如图 8 所示。体系在 x 和 y 方向为周期性边界, 在 z 方向上为非周期边界。

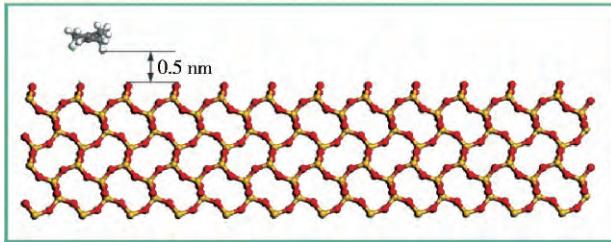


图 8 轮胎与路面接触模型

Fig. 8 Tire-pavement contact model

3 轮胎与路面接触界面摩擦系数模拟分析

根据轮胎与路面接触模型, 设置速度和原子移动两种主要方式。通常车辆在行驶过程中速度一般为 20~120 km \cdot h $^{-1}$, 所以模拟过程中速度的设置为 20 km \cdot h $^{-1}$ 、40 km \cdot h $^{-1}$ 、60 km \cdot h $^{-1}$ 、80 km \cdot h $^{-1}$ 、100 km \cdot h $^{-1}$ 和 120 km \cdot h $^{-1}$ 。

对异戊二烯加压根据计算, 每个原子所受到的力很小。一般情况下小汽车压强约为 0.255 MPa, 每个原子所受的力大约为 1.6×10^{-14} N。在 LAMMPS 中 metal 单位系统下力的单位为能量除以距离, 即 eV \cdot nm $^{-1}$ 。根据模拟中对异戊二烯进行弹簧墙加压计算, 在初始值为 0.5 nm 的距离下, 分 20000 步慢慢压至 0.3 nm 平衡态, 再分 10000 步压至 0.2 nm, 这样原子所受的压力与真实值最为接近。

图 9 是时间步长为 1 fs, 使用 velocity 命令控制原子移动, 运动 100000 步后在 300 K 时速度与摩擦系数的拟合直线关系。

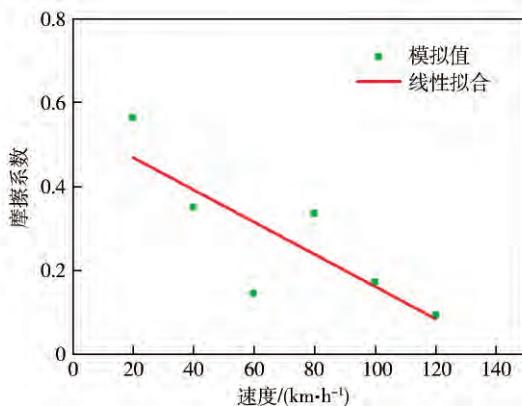
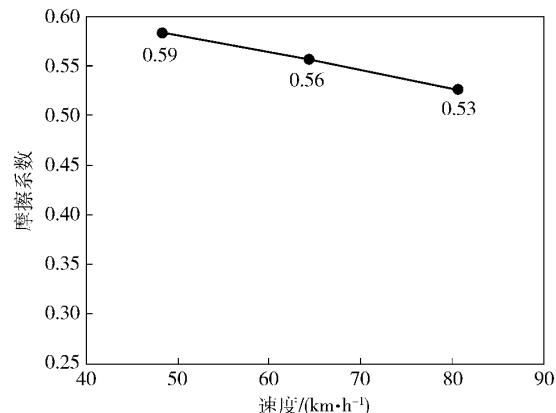



图 9 不同速度下接触界面摩擦系数模拟结果

Fig. 9 Simulation results of change in interface friction coefficient with velocity

300 K 时, 速度与摩擦系数的实验数据关系如图

10 所示。随着速度增大, 摩擦系数会逐渐减小, 虽然不同路面环境导致的减少数量不一样, 但是其趋势却是明显相同。

图 10 不同速度下摩擦系数实验数据^[10]Fig. 10 Test results of Change in friction coefficient with velocity^[10]

将模拟结果与实验结果进行对比, 一方面可以看出二者反映出相同的变化趋势, 即随着速度的增大摩擦系数会随之减小, 由此表明此模型可以用于预测轮胎与路面的摩擦接触特性; 另一方面, 模拟结果中摩擦系数低于实验测试结果。分析其原因在于, 此模型建立在纳米尺度上, 通过分子动力学模拟计算方法分析轮胎与路面摩擦接触过程中分子间相互作用, 而没有考虑宏观变形产生的能量损失和磨粒切削等对摩擦系数的影响, 因此其摩擦系数均低于实际测试结果。

4 结论

(1) 轮胎与路面微观表面特性分析表明: 链状聚异戊二烯分子链为螺旋状结构, 分子间隙较大, 易产生较大变形; 二氧化硅在破坏时断面平整, 易形成多条裂纹的扩展破坏模式, 最终导致产生平整断面的小碎块。金属材料断面明显不平整, 有若干个小突起, 断裂裂纹较少。

(2) 采用分子动力学模拟方法, 在纳米尺度上建立轮胎与路面的三维接触模型, 确定了轮胎与路面模型的初始结构——固定基底的二氧化硅和匀速滑动的异戊二烯单链。根据分子动力学模拟计算确定异戊二烯与二氧化硅的距离为 0.5 nm。

(3) 利用轮胎与路面的三维接触模型, 对接触界面摩擦特性进行模拟。模拟结果表明, 随着速度的增大摩擦系数变小。将模拟结果与实验结果进行了对比, 发现二者具有相同的变化趋势, 证明了此模拟结果的有效性。

参 考 文 献

[1] Wang W D. The Research on the Laboratory Test and Performance Index of Cracks Patching Materials in the Asphalt Mixture Pavement

[Dissertation]. Nanjing: Southeast University ,2010
(王文达. 沥青路面裂缝修补材料室内实验及性能指标研究
[学位论文]. 南京: 东南大学 2010)

[2] Do M T , Tang Z , Kane M. Evolution of road-surface skid-resistance and texture due to polishing. *Wear* , 2009 , 266(5 – 6) : 574

[3] Taneerananon P , Yandell W O. Microtexture roughness effect on predicted road-type friction in wet conditions. *Wear* , 1981 , 69 (3) : 321

[4] Goubert L. The contribution of road surfacing // *The EPR Infrastructure Safety Forum*. Brussels ,2005

[5] Rachakatla P. Application of relational database principles for rating bituminous coarse aggregates with respect to frictional performance. *Phys Rev Lett* , 2012 , 90(3) : 321

[6] Tamai A , Kameyama S , Kasahara A. et al. Effect of the grading of asphalt mixture on the macrotexture and skid resistance of asphalt pavement // *Proceedings of 8th International road conference*. Budapest (Hungary) , 2001: 1

[7] Chu X M , Li Y , Yan X P , et al. Development of skid resistance evaluation based on asphalt pavement micro-texture. *Comput Commun* , 2007 , 25(1) : 61
(初秀民 , 李永 , 严新平 , 等. 基于微观形貌特征的沥青路面抗滑性能评价研究进展. 交通与计算机 2007 25(1) : 61)

[8] Lu Y , Wang L B. Nanoscale modelling of mechanical properties of asphalt-aggregate interface under tensile loading. *Int J Pavement Eng* , 2010 , 10(5) : 393

[9] Du X L , Jin L. Mechanical property research on concrete based on random multi-scale mechanical model. *Eng Mech* , 2011 , 28: 151
(杜修力 , 金浏. 基于随机多尺度力学模型的混凝土力学特性研究. 工程力学 2011 28: 151)

[10] Li C C , Liu X M , Rong J. Experimental study on effect of road condition on pavement friction coefficient. *J Highw Transp Res Dev* , 2010 , 27(12) : 27
(李长城 , 刘小明 , 荣建. 不同路面状况对路面摩擦系数影响的试验研究. 公路交通科技 2010 27(12) : 27)