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ABSTRACT To accurately capture micro frictional contact characteristics and intermolecular forces between tires and pavement the
three-dimensional monomer models and the interface contact model of tires represented by isoprene and aggregates represented by silica
were established by the molecular dynamics method. The microscopic structure and tire-aggregate contact properties were studied in
nanoscale. Simulation results show that polyisoprene molecular chain is in the spiral structure with big molecular gaps and is easy to
generate large deformation under external loading. Conversely silica is brittle with relatively flat surfaces. In the tie—pavement contact
model silica is the fixed base and the single-chain polyisoprene is sliding on the top of the silica base at a constant velocity. The
surface distance between the silica base and the single—chain polyisoprene is 0. 5 nm. Simulation results of tire—pavement contact show
that the friction coefficient decreases with the increase of sliding velocity and the relationship between the friction coefficient and slid—
ing velocity shows good agreement with test results indicating that molecular dynamics simulation is capable to predict the tire—
pavement frictional contact characteristics.
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Fig.1 Molecular structure of isoprene
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/ Fig.2 Molecular structure of single-chain polyisoprene
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Fig.4 Polycrystalline structure of silica
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Fig.5 Stretching process of silica: (a) energy minimization; ( b) relaxation; (c) dynamic effect of stretch
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Fig.6 Stretching process of copper atoms: ( a) half of the tensile; (b) after the tensile
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Fig.7 Three-dimensional contact model. ( a) vertical view; (b) main view
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Table 1 Energy values of the models with different distances
/
nm /eV
0.1 -2538.9057 201 7000
0.2 -2539.5073 195 7000
0.1+ 0.3 -2539. 1773 168 1000
0.2.0.3.0.4.0.5.0.6.0.7.0.8.0.9 1.0 nm 0.4 ~2539. 0217 172 8000
300K 0.5 ~2538.9516 179 3000
0.6 ~2538. 9084 185 4000
1 0.7 -2538. 8833 195 3000
0.3 nm =2539. 1773 eV 0.8 -2538. 8682 197 6000
168 0.9 -2538. 859 181 5000
1000 0.3 nm 1.0 ~2538. 8619 211 6000
0.3 nm Materials Studio
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Fig. 9  Simulation results of change in interface friction coefficient
with velocity
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