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Online performance prediction of CCPP byproduct coal-gas system based on online

sequential extreme learning machine
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ABSTRACT Aiming at the problem of mismatch between the model and the process for a byproduct coal-gas system in a combined
cycle power plant ( CCPP) due to frequent changes in working conditions this article introduces a method for online performance
prediction of the CCPP byproduct coal-gas system based on an online sequential extreme learning machine ( OS-ELM) . Firstly by
analyzing the working principle of each main component in the byproduct coal-gas system and using the fluid mechanics energy
conservation and mass conservation principles a mechanistic model is established for performance prediction of the byproduct coal-gas
system which essentially consists of scrubbers centrifugal compressors and coolers. Further the OSE£LM and the sliding window
technique are also used to correct the error of the mechanistic model thus we realize the accurate prediction of export parameters and
the update of the model in time. Simulation results show that this method can accurately predict the pressure ratio and temperature ratio
of the byproduct coal-gas system and track the change in coal-gas system working conditions and the characteristics drift which meet
the needs of actual industrial production.
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Fig. 1  Schematic diagram of a cogeneration plant unit firing

COREX-C3000 byproduct coal-gas
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Fig.2 Schematic diagram of the hybrid model
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Fig.3 Structure of the byproduct gas system
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