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基于 OS-ELM 的 CCPP 副产煤气燃料系统在线性能
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摘 要 针对联合循环发电厂( combined cycle power plant，CCPP) 煤气系统因工况变化频繁带来的模型与过程不匹配的问
题，提出一种基于 OS-ELM ( online sequential extreme learning machine) 的 CCPP副产煤气燃料系统在线性能预测方法． 首先通
过分析副产煤气系统各主要组成部件的工作原理，利用流体力学、质量守恒以及能量守恒等关系，建立起以离心压缩机、煤水
分离器、冷却器等为核心部件的副产煤气系统机理模型． 利用 OS-ELM 算法和滑动窗口技术对机理模型的输出误差进行修
正，实现副产煤气系统出口参数的精确预测和模型的快速在线更新． 仿真实验证明，该方法能够准确地预测副产煤气系统的
输出压比和温比，并能够跟踪煤气系统工况的变化和特性的漂移，满足实际工业生产的需求．
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ABSTＲACT Aiming at the problem of mismatch between the model and the process for a byproduct coal-gas system in a combined

cycle power plant ( CCPP) due to frequent changes in working conditions，this article introduces a method for online performance

prediction of the CCPP byproduct coal-gas system based on an online sequential extreme learning machine ( OS-ELM) ． Firstly，by

analyzing the working principle of each main component in the byproduct coal-gas system and using the fluid mechanics，energy

conservation and mass conservation principles，a mechanistic model is established for performance prediction of the byproduct coal-gas

system，which essentially consists of scrubbers，centrifugal compressors，and coolers． Further，the OS-ELM and the sliding window

technique are also used to correct the error of the mechanistic model，thus we realize the accurate prediction of export parameters and

the update of the model in time． Simulation results show that this method can accurately predict the pressure ratio and temperature ratio

of the byproduct coal-gas system and track the change in coal-gas system working conditions and the characteristics drift，which meet

the needs of actual industrial production．
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随着环保要求的提高，燃气--蒸汽联合循环
( gas--steam combined cycle power plant，CCPP) 发电技
术以其高效、环保等诸多优点，备受电厂和钢厂的青睐
与应用． 将 CCPP与炼钢 /铁工艺相结合，燃用炼钢 /铁
过程的副产煤气进行发电，能起到节能减排和提高经

济效益的作用［1
--3］． 副产煤气系统作为炼钢 /铁工艺和

CCPP机组的中间过渡环节，主要对炼钢 /铁工艺产生
的富余煤气进行除尘、加压、热值调整和流量控制后，
将满足要求的煤气送入燃气轮机的燃烧室燃烧发电，

其运行状态的好坏影响到整个机组的稳定高效运行，

对其控制和优化运行问题尤为重要，而副产煤气系统

的控制和优化运行是以其性能的准确预测为前提的，

因此副产煤气系统的性能预测和模型的在线快速更新

问题至关重要．
在实际生产中，副产煤气系统受前段炼钢 /铁工艺

的影响，煤气的成分、入口温度、压力和流量波动较大，
煤气系统常年运行在变工况的状态下，这给煤气系统

性能的准确预测造成一定的困难． 已有关于 CCPP 副
产煤气系统的研究，例如 Ersayin 和 Ozgener［4］、Ganjeh-
kaviri等［5］建立的 CCPP 系统的机理模型以及盛春阳
等［6］、Zhao 等［7］提到的基于数据的高炉煤气系统模
型，这些模型虽能准确预测出系统在稳定工况运行时

的性能，一旦系统的运行工况发生变化，模型的预测精

度将会下降，并不能有效解决因工况变化频繁带来的

模型 !过程不匹配的问题． 在线序列极限学习机
( online sequential extreme learning machine，OS-ELM )
算法的应用［8

--13］，为解决模型的快速在线更新问题提

供依据．
本文结合副产煤气系统机理模型和 OS-ELM 算

法，建立副产煤气系统的混合模型，对煤气系统的出口

参数( 输出压比和温比) 进行在线预测． 充分利用 OS-
ELM算法的快速在线学习能力来修正煤气系统机理
模型的输出误差，并跟踪煤气系统工况的变化，实现副

产煤气系统性能的准确预测． 最后，通过仿真实验验
证该方法的可行性．

1 OS-ELM

OS-ELM是在极限学习机［14］的基础上提出的一种
针对 SLFNs的在线增量式快速学习算法，它不仅可以
按单个样本数据逐个训练模型，而且能够实现批次数

据的训练过程． 给定 N个学习样本 Ω = { ( x i，y i ) | x i∈
Ｒd，y i∈Ｒn，i = 1，2，…，N} ，其中 x i = ( xi1，xi2，…，xid )

T，

y i = ( yi1，yi2，…，yin )
T，具有 L 个隐含层节点的 SLFNs

能够以零误差逼近这 N个学习样本，即

fL ( X) = ∑
L

i = 1
β iG( a i，bi，X) ． ( 1)

式中，a i 为输入连接权值，β i 为输出连接权值，bi 为隐

含层节点的阈值，G( a i，bi，X) 表示输入为 X 时对应的
第 i个隐含层节点的输出． 当运用增加型隐含层节点
时，G( a i，bi，X) = g( a iX + bi ) ，bi∈Ｒ．

从 Ω中选取初始数据集 Ω0 = { x i，y i }
N0

i = 1，其中

N0≥L，将其连续地输入到网络中，则 OS-ELM 算法训
练步骤如下．
( 1) 随机选取 a i 与 bi，i = 1，2，…，L．
( 2) 计算隐含层输出矩阵 H0，

H0 =

g( a1x1 + b1 ) … g( aLx1 + bL )

 
g( a1xN0

+ b1 ) … g( aLxN0
+ bL









) N0 × L

． ( 2)

( 3) 计算初始输出权值 β0 = P0H
T
0Y0，其中 P0 =

( HT
0H0 )

－ 1，Y0 = ( y1，y2，…，yN0
) T，并置 K = 0，其中 K

为网络的数据段个数．
( 4) 将新采集到的数据( xK + 1，yK + 1 ) 加入数据集，

计算 hK + 1，并根据式( 3) 更新 PK + 1和 βK + 1 ．

PK + 1 = PK －
PKhK + 1h

T
K + 1PK

1 + hT
K + 1PKhK + 1

，

βK + 1 = βK + PK + 1hK + 1 ( y
T
K + 1 － h

T
K + 1βK )

{ ．
( 3)

( 5) 令 K = K + 1，转步骤( 4 ) 进行迭代，直到所有
样本数据训练结束．

2 联合循环及混合模型结构

2. 1 联合循环系统
以 CCPP机组煤气系统作为仿真对象［15］． 如图 1

所示，联合循环发电装置主要由燃气轮机机组和蒸汽

轮机机组两个部分组成． 其中，煤气压缩系统作为燃
气轮机机组的核心部件，主要对饱和煤气进行加压处

理，并将其送入燃气轮机的燃烧室燃烧，利用高温气体

的透平做功来驱动发电机进行发电． 另外，再利用燃
气轮机产生的高温废气对余热锅炉进行加热，将其产

生的蒸汽供给到蒸汽轮机中做功进而驱动另一发电

机． 燃气轮机燃烧的煤气是 COＲEX-C3000 炼铁工艺
中还原竖炉产生的副产煤气．
在实际生产中为了能够获得较高压力的副产煤

气，煤气压缩系统通常采用多级压缩的方式对其进行

升压． 本文的煤气压缩系统由高 /低压煤气压缩机两
个部分组成，其中高压煤气压缩机又分为一段和二段

两个压缩过程． 煤气压缩系统的工艺流程为: 首先为
了调整副产煤气的热值，在煤气中往往会掺杂少量的

氮气，并利用湿式电除尘器对其进行简单的除尘处理，

将含尘量降低到所规定的标准 ( 一般要求含尘量在

1 mg·m －3以下) ，再利用煤水分离器 ( Ⅰ级) 对其进行
脱水，随后煤气将通过低压煤气压缩机进行升压，经处

理后煤气的压力和温度将分别升至 0. 33 MPa 和
167 ℃ ;为了降低煤气的二次压缩功耗，在煤气进入高

·268·
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图 1 热电联产机组燃 COＲEX-C3000 副产煤气的示意图
Fig． 1 Schematic diagram of a cogeneration plant unit firing
COＲEX-C3000 byproduct coal-gas

压煤气压缩机一段之前，先使用冷却器( Ⅰ级) 进行降
温( 温度降至 32 ℃ ) ，然后再利用煤水分离器 ( Ⅱ级)
进行脱水处理，经过高压煤气压缩机一段加压后，煤气

的压力和温度将分别上升至 0. 9MPa和 152℃ ;再使用
冷却器( Ⅱ级) 和煤水分离器 ( Ⅲ级) 进行冷却和脱水
处理( 温度为 32℃ ) ，进入高压煤气压缩机二段进行压
缩，此时煤气的压力和温度将分别高达 2. 35 MPa 和
150 ℃ ． 最后高压煤气将通过控制阀进入燃烧室，以较
大的过剩空气系数进行燃烧．

2. 2 混合模型结构

混合模型的结构如图 2 所示． 由于副产煤气系统
结构较为复杂以及未能考虑到系统中某些未知因素的

存在，且机理模型中的一些重要参数也难以准确获得，

从而导致机理模型的预测误差较大． 为了提高机理模
型的预测精度，基于副产煤气系统的过程数据，利用

OS-ELM数据补偿模型修正机理模型预测压比和温比
的偏差．

图 2 混合模型结构
Fig． 2 Schematic diagram of the hybrid model

混合模型的输入数据有介质的压力和温度、质量
流量以及转速． 通过 CCPP 副产煤气燃料系统的机理
模型可以获得与输入数据相对应的机理输出值，将副

产煤气系统的实际值与该机理输出值进行比较获得偏

差值;再利用 OS-ELM训练输入数据与此偏差值;最后
将 OS-ELM数据补偿模型的输出叠加到机理模型的输

出上得到混合模型的输出．
2. 3 副产煤气系统机理模型
副产煤气燃料系统的结构如图 3 所示，主要工作

部件包括离心压缩机、煤水分离器、冷却器和控制阀．
假设煤气的质量流量为 mg，煤水分离器的入口压力和

温度分别为 P in和 Tin，出口压力和温度分别为 Ps1和

Ts1，并且分别将 Ps1和 Ts1直接作为压缩机的入口压力

和温度，Pc1和 Tc1分别表示压缩机的出口压力和温度，

同理分别将 Pc1和 Tc1直接作为冷却器的入口压力和温

度，Po1和 To1分别表示冷却器的出口压力和温度，分别

将 Po1和 To1也直接作为控制阀的入口压力和温度，控

制阀的出口压力和温度分别为 Pv1和 Tv1 ． 采用模块化
建模法分别对离心压缩机、煤水分离器、冷却器和控制
阀进行建模．

图 3 副产煤气燃料系统结构
Fig． 3 Structure of the byproduct gas system

2. 3. 1 离心压缩机模型
通过分析离心压缩机的压缩机理和气流损失的影

响，利用等熵效率定义和能量守恒关系，可以建立离心

压缩机的输出压比和温比模型． 在理想状态下，叶轮
传递给气体的总比焓 Δh02为

［16］:

Δh02 = σu
2
1 ． ( 4)

式中，u1 为叶轮叶片出口处的圆周速度，σ 是滑差
系数．
然而，压缩机在实际能量传递过程中会有部分的

能量损失，其中以在叶轮和扩压器上的冲击损失 Δhcy

和 Δhck以及摩擦损失 Δhmy和 Δhmk为主要部分
［17］． 叶

轮和扩压器上的冲击损失与摩擦损失分别表示为［15］

Δhcy = ζsh· (1
2 r1ω －

cotβ1b·mg

ρ1·A )
1
， ( 5)

Δhck = ζsh· (1
2 σr2ω －

cotα2b·mg

ρ1·A )
1
， ( 6)

Δhmy =
4f·ly·m

2
g

2dy·ρ
2
1·A

2
1·sin

2β1b

， ( 7)

Δhmk =
4f·lk·m

2
g

2dk·ρ
2
1·A

2
1·sin

2α2b

． ( 8)

式中，ζsh是冲击损失系数，ω 为叶轮的角速度，ρ1 为入
口气体密度，A1 为叶轮参考面积，β1b为叶片的安装角

度，α2b为扩压器的安装角度，mg为流体质量流量，r1 为
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叶轮平均半径，r2 为扩压器平均半径，ly 和 lk 分别为叶
轮与扩压器叶道中间流线长度，dy 和 dk 分别为叶轮与

扩压器的水力直径，f为摩擦损失系数．
其他的气流损失对压缩机性能的影响相对较小，

将以效率修正系数 Δηx 的形式在等熵效率计算中予

以考虑［15］． 在压缩机各种气流损失计算的基础上，给
出等熵效率的定义:

η( mg，ω) =
Δh02

Δh02 + Δh loss
－ Δηx ． ( 9)

式中，Δh loss = Δhcy + Δhck + Δhmy + Δhmk ．
综上分析可以得出有离心压缩机的压比 ε1与温

比 τ1计算公式为

ε1 =
Pc1

Ps1
= λ [0 1 +

η( mg，ω)·Δh02

Ts1·c ]
p

γ
γ － 1
， ( 10)

τ1 =
Tc1

Ts1
= 1 +

σr22ω
2

Ts1·cp·η0
． ( 11)

式中: λ0为压比调节系数; cp 为副产煤气质量定压热
容; γ为副产煤气质量热容比; η0 为机械效率，取值在

97% ～ 99%之间．
2. 3. 2 煤水分离器模型
副产煤气系统采用圆筒立式煤水分离器，其压损

模型为［18］

ΔP1 = λ·
l f·md·Tin·m

2
g

k·g·Dmin·P in·A
2
g

． ( 12)

式中，λ为摩尔系数，l f为分离器管长，md为流体重度，k
为压损系数，g 取 9. 81 m·s －2，Dmin为压损最小当量直

径，Ag为管道截面积．
2. 3. 3 冷却器模型
为了提高后续压缩过程的效率，采用管壳式冷却

器对压缩后的高温气体进行冷却处理，其出口的压损

和温度模型可表示为［19］

ΔP loss =
2δim

2
gZnn

gρ1d i
+
2m2

gnx

gρ1
， ( 13)

To1 = ε
mgaca － mgbcb ( 1 － ζh )
mgaca － mgbcb ( 1 － ζh ) ε

Tc1 +

mgaca ( ε － 1)
εmgbcb ( 1 － ζh ) － mgaca

Tai，

ε = eK1A (C
1

mgaca
－ 1
mgbc )b













．

( 14)

式中，δi为摩擦系数，Z 为管长，d i为每个管内直径，nn

为管内管程，nx为管箱管程，Tc1和 To1分别是冷却器入

口温度和出口温度，ζh为热量损失率，c为流体比热，Tai

为冷却器温度，下标 a表示冷却水参数，下标 b表示煤
气参数，K1为总传热系数，Ac为平均传热面积．
2. 3. 4 控制阀模型
控制阀主要用于控制煤气系统中煤气的流量和压

力，其两端的压力和质量流量之间的关系可表示为

mg =
mmax (f l

l )
max ΔPvo

ΔP槡 vo

Po1 － P槡 v1 ． ( 15)

式中，mmax是阀的最大流量，lmax为阀的最大行程，
( f( l / lmax ) | ΔPvo为阀在前后压差为 ΔPvo时阀门开度固有

流量特性曲线，Po1和 Pv2分别是阀进、出口压力．
综上所述，煤气经煤水分离器、离心压缩机、冷却

器和控制阀的处理后，副产煤气系统出口压力和温度

的模型分别为

Pout = ε1·( P in － ΔP1 ) － ΔP loss， ( 16)

Tout = τ1·Tin － To1 ． ( 17)
2. 4 基于 OS-ELM的数据补偿模型及在线更新
机理模型能够在趋势上很好地反映主要因素对副

产煤气系统的影响，但是机理模型也存在预测误差较

大的缺点． 考虑到模型需要快速在线更新的要求，利
用 OS-ELM来修正机理模型输出压比和温比的偏差．
另外，为了避免噪声等因素导致模型更新频繁，而导致

算法实时性下降，采用在线滑动窗口技术指导补偿模

型的在线更新．
基于 OS-ELM数据补偿模型的输入参数 X为入口

压力和温度、质量流量以及转速，输出参数 y为机理模
型预测压比和温比的修正值． 若隐含层节点数为 L，那
么 OS-ELM网络结构如图 4 所示．

图 4 OS-ELM网络结构
Fig． 4 Architecture of the OS-ELM neural network

选取 Sigmoid为激活函数，基于 OS-ELM的数据补
偿模型训练及模型更新步骤如下:

( 1) 输入初始训练样本集，设定网络参数，求得初
始隐含层输出矩阵H0和输出权值向量 β0，得到误差补

偿模型，并在线应用;

( 2) 在线选取窗口长度 M、误差阈值 E 以及频率
F，对窗口内容的数据进行模型预测误差分析，当窗口
内的模型预测误差频率大于 F，进入步骤( 3 ) ，否则不
更新，模型在线应用，同时，重复步骤( 2) ;
( 3) 在线学习，根据最新积累的样本数据序贯更

新参数 H和 β，返回步骤( 2) ．

·468·



褚 菲等: 基于 OS-ELM的 CCPP副产煤气燃料系统在线性能预测

3 副产煤气系统出口参数在线预测

在实际运行中，CCPP副产煤气系统由于受前段炼
钢 /铁工艺的影响，煤气流量、压力、温度等波动较大，
常常处于变工况运行状态，而且当煤气成分出现较大

波动( 前段工艺变化，例如矿石种类变化) 以及随着运

行时间的推移，系统的特性还会出现漂移现象． 为了
使煤气系统能够描述这种动态时变特性，其模型需要

及时快速在线更新． 根据经验或生产要求对副产煤气
燃料系统模型设定一个误差上限值，并对模型的预测

输出进行实时监测，若系统监测到模型预测偏差大于

所设定的临界值，则就需要采用系统最新运行时段的

数据对 OS-ELM进行训练，从而快速地修正模型的预
测偏差． 同时，为了避免因为噪声等因素引起模型更
新频繁，而导致算法实时性变差，可以采用在线滑动窗

口技术，通过对窗口内模型预测误差的分析综合判断

模型的精度和稳定性，指导模型的在线更新．
利用MATLAB Ｒ2014a构建上述混合模型，其中副

产煤气燃料系统机理模型中对模型影响较大的几个参

数( 例如压缩机模型中的冲击系数，叶轮参考面积调

节系数和冷却器温度模型中的总传热系数等) 以及离

心压缩机的几何尺寸可参考相关文献得到［15］． 为了
体现模型的在线更新过程，分别从不同时期的历史运

行数据中，选取较早一段运行时间的 200 组和最新一
段运行时间的 255 组数据样本用于 OS-ELM 网络训

练，另外在最新一段时间的运行数据中选出 100 组数
据样本用于模型验证． 各模型的预测效果采用均方根
误差( ＲMSE) 和最大误差绝对值 ( MAE) 的准则来评
价． 给定 N个测试样本有

ＲMSE = ∑
N

i = 1
( yi － Yi )

2

槡 /N，

MAE = max
i = 1，…，N

| yi － Yi | ．

式中，yi 为实际输出值，Yi 为模型预测值．
将上述数据样本用于验证各时段混合模型的预测

性能，其预测的压比和温比如图 5 所示． 为了更好地
进行说明，机理模型的预测结果以及副产煤气系统实

际的运行数据也都在同一图中画出． 相比机理模型，
基于 OS-ELM的混合模型预测效果更好，与副产煤气
系统的实际输出值更加吻合，并能够在一定程度上解

决机理模型所存在的预测误差较大的问题． 另外，各
模型预测的 ＲMSE和 MAE 分别列于表 1． 可以看出，
相比机理模型，混合模型具有较高的预测精度． 同时，
利用较早时期的运行数据训练得到的混合模型，其预

测压比的 ＲMSE 和 MAE 分别为 0. 0253 和 0. 0862，预
测温比的 ＲMSE 和 MAE 分别为 0. 0047 和 0. 0136; 通
过使用在线滑动窗口技术，利用最新一段时间的运行

数据对 OS-ELM 进行更新，其预测压比的 ＲMSE 和
MAE分别为 0. 0124 和 0. 0498，预测温比的 ＲMSE 和
MAE分别为 0. 0034 和 0. 011． 可见，混合模型的预测
误差有了明显的下降，实现模型的快速在线更新．

图 5 副产煤气系统的输出压比( a) 与温比( b)
Fig． 5 Output pressure ratio ( a) and temperature ratio ( b) of the byproduct gas system

表 1 各模型的 ＲMSE与 MAE比较
Table 1 ＲMSE and MAE of different models

模型
压比 温比

ＲMSE MAE ＲMSE MAE

机理模型 0. 2908 0. 3573 0. 1826 0. 1922

混合模型( 数据较旧) 0. 0253 0. 0862 0. 0047 0. 0136

混合模型( 数据较新) 0. 0124 0. 0498 0. 0034 0. 0110

4 结论

结合 OS-ELM 算法和煤气系统机理模型，建立了
副产煤气燃料系统的混合模型，用于预测其输出压比

与温比． 在煤气系统机理模型的基础上，充分利用
OS-ELM算法和滑动窗口技术来修正机理模型的输出
偏差，实现模型的快速在线更新． 通过仿真实验证明，
该方法能够准确地预测出煤气系统的输出压比与温
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比，并解决煤气系统由工况变化频繁带来的模型与过

程不匹配的问题，实现 CCPP 副产煤气燃料系统的高
效、稳定运行．
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