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Microsegregation in low carbon Fe—Mn—Si—Al TWIP steel
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ABSTRACT Microsegregation in low carbon Fe—25Mn—3Si—3 Al TWIP steel produced in the laboratory and steel plant were system—
atically investigated by electron microprobe analysis. The results show that the dendritic segregation is serious in both the laboratorial
ingot and mold casting after AOD steelmaking at the industrial plant. Additionally microsegregation in the AOD ingot is higher and
the greatest amounts of segregation of Mn and Al are measured to be 6. 8% and 2. 4% respectively. After electroslag remelting in the
steel plant the grain boundary segregation is serious and it completely improves after a forging process. A higher alloy composition
and a wider crystallization temperature interval are the main reasons for the serious microsegregation. All specimens of the TWIP steel
have the same law. Mn shows obvious negative segregation Al and Si exhibit positive segregation and Al has the highest degree of
segregation. The elements’ solute distribution coefficient K of the TWIP steel was calculated using the Thermo—Calc software. It is
found that the microsegregation laws of Mn and Al in theory are opposite to those in the experiment and the main reason is silicon con—
tent.
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Fig.3 Dendritic structure of samples under the optical microscope: (a) Sample 1; (b) Sample 2
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Fig.5 Quantitative analysis results of samples with EMPA: (a) Sample 1; (b) Sample 2; (c¢) Mn content; (d) Al content; (e) Si content
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Fig.6 OM images of samples revealing solidification structures: ( a) Sample 3; (b) Sample 4
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Fig.7 Quantitative analysis results of Sample 3 with EMPA
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Fig.8 Line scanning results of Sample 4 with EMPA
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Fig.9 Line scanning results of Fe—25Mn—0Si—3Al (a) Fe—25Mn—1Si—3Al (b) and Fe—25Mn—2Si—3Al (c¢) steel with EMPA
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