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Safety evaluation of pipeline steels under SNG containing H,
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ABSTRACT Synthetic natural gas ( SNG) is an important developing direction of the clean utilization of coal. The present pipeline
steel may cause hydrogen-induced delayed cracking when used to transit SNG due to the hydrogen partial pressure in SNG perhaps up
to 0. 72 MPa. Therefore the safety assessment of pipeline steel for long-term service is very important and necessary. In this work hy—
drogen damage and hydrogen-induced delayed cracking in X—70 pipeline steel and 20¥ steel at different hydrogen contents were studied
by using autoclave constant load test and electrochemical hydrogen charging methods. The service safety of the steels in SNG was eval-
uated. There is no hydrogen damage in the two kinds of steel after being placed in the autoclave in which the total pressure 12 MPa ( 10
MPa N, + 2MPa H,) is kept for one month. Hydrogen-induced delayed cracking does not occur in the U-bending specimen. And the
constant load samples do not fail after they are kept at the yield stress for one month. The hydrogen content entering into X—70 and 20*
samples is much lower than the threshold hydrogen content for hydrogen-induced delayed cracking and that for hydrogen damage.

Therefore both X—70 steel and 20" steel have high safety factors during the long-term service of transiting SNG.
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Table 1 Chemical composition and tensile properties of the tested steels

1% o,/ ay!
8/%
C Mn P S MPa MPa
X—70 0.066 1.39 0.008 0.002 522 578 18.2
20* 0.14 0.47 0.012 0.034 260 365 40

(10 mm x 20 mm x 2 mm)

. U (
20 mm x 120 mm)
U ASTM ( G30—97)
( 1 mm x5 mm X 15 mm)
1
(
(b)( - mm)

Fig.1 U bend welding specimen ( a) and tensile welding specimen ('b) ( unit: mm)

1.5 mm x



<954 - 33 7
2000" 1.5
( API) 0.80,( o,
) H,S
(
)
H,S

2

12 MPa (
6% )
12
MPa 11.28 MPa N, + 0.72 MPa H,.
API H,S
H2
. . 12 2
MPa H, 0.72 MPa 2 MPa ( Fig.2  Constant load testing machine with high-temperature auto—
16.7%) clave
12 MPa. H, 2 MPa G4 PHOENIX DH

X—70 600

20* 12 MPa. H, 0.72 MPa C 10 min
2.
2.1
0.72 ~2MPa H, N, 4%
12 MPa. ( 3 . X170
) 20"
2.2
. 0.2 mol*L ™" NaOH + X=70 12 MPa. H,
0.22 gL' 0.5mol*L"" H,S0, +0.22 g*L."' 2 MPa .
0.5 ~100 mA*cm ™ 4
3 X0 (a) 20* (b)

Fig.3 Optical microstructures of X—70 steel (a) and 20%( b) steel
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Fig.4 Morphology around the mark point of X—70 pipeline steel before ( a) and after ( b) placing in 10 MPa N, +2 MPa H, for one mouth

X—70 20" U 10 MPa N, +2
MPa H, . X=70
. w,=1.13 x10°°
X—70 20" oc=0.(o. w, =0.7x107°
) 10 MPa N, +2 MPa H, o=0, 720 h
* X—=70 20" 12 MPa. H, Wi = (w, +w,) 12=(1.13x10™° +0.7x107°) /2 =
2 MPa 0.92 x10°°.
: U 20"
. w, =3.09x10°°
X—70 20" 12 MPa. w,=1.05x10"° 20" o=0,
0.72MPa 2 MPa 720 h
2. Wy =(w, +w,) /2=(3.09x10™° +1.05x107°) /2 =
2 X170 20" 12 MPa. 0.72 MPa 2.07 x10°".
2 MPa 95%
Table 2 Hydrogen content of X—70 steel and 20" steel after placing in
11.28 MPa N, +0. 72 MPa H, and 10 MPa N, +2 MPa H, for one mouth
Py /MPa wy ( X=70) /10 76 wy (20%) /10 7°
0.72 0.20 £0.23 0.30 £0.42
2 0.44 £0.33 0.36 +0.21
2.3 o =0,
(
) o=0
X=70 20° 5 X700  20* oc=a,
2 MPa
5. Fig.5 Fracture time of X=70 steel and 20 steel under o = o, with
20" different hydrogen contents
; X—=70
1x10°° 2.4
) 0.5 mol*L ™" H,S0, +0.22
? g L™ 24 h

720 h
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Table 3 Hydrogen damage threshold w, and hydrogen-induced cracking

threshold wy, of several kinds of steel

oy, /MPa 1w, /10 7% 1w, /107w, /w,

20* 365 3.51 2.07 1.7
X—=70 578 2.83 0.92 3.1
900 1.3 0.2 6.5 12
v 900 2.03 0.26 7.8 13
847 0.7 0.09 7.8 13
SM90 810 5.8 0.75 7.7 14
28CrMoTi 800 8.5 0.73 11.6 14
26CrMo,S 900 9.4 0.8 11.8 14
2060 14.3 0.4 35 15
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