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High temperature deformation behavior and processing maps of SAE8620H gear steel

ZHU Xiao=ing WANG Bao—u™
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ABSTRACT The high temperature deformation behavior of SAE8620H gear steel in a temperature range of 950 to 1100 C and a

strain rate range of 0. 01 to 10s ™'

was studied by high temperature compression tests. The flow stress of the steel has steady state char—
acteristics. The flow stress decreases with the increase of deformation temperature and the decrease of strain rate. The constitutive e—
quation of the steel can be described by a hyperbolic sine equation. Based on the related data of peak stress strain rate and tempera—
ture the hot deformation activation energy of the steel was deduced to be about 280359. 9 J*mol ™'. The processing maps were drawn
according to 40% and 60% deformation. The forming parameters can be determined by the processing maps. Low strain rate should be
used for small deformation while high strain rate and high forming temperature or low strain rate and low forming temperature should

be used for large deformation.
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Table 1 Chemical composition of SAE8620H steel %

C Cr Ni Mo  Mn Si Cu S P Al

0.20 0.57 0.46 0.20 0.85 0.25 0.09 0.003 0.011 0.02

980 °C 30 min
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Fig.1 Air cooling structure of SAE8620H steel
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Fig.2 High temperature compression process
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Fig.3 True stress—stain curves of the steel at different deformation temperatures: (a) 950 °C; ('b) 1000 °C; (c¢) 1050°C; (d) 1100 C
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Table 2 Values of o at different compression temperatures and strain

rates

/ ,/MPa

s 950 °C 1000 C 1050 C 1100 °C

0.01 69.5 56.9 48.7 38.5
0.1 102.3 87.3 77.9 61.9
1.0 130. 6 113.5 95.5 79. 1
0.5 150.0 128.8 109.8 93.3
10 190.0 173.3 150.3 131.2

lné‘lna‘p \lné—O'I, JIng—In sinh( ao)

In sinh(ag) —1000/T 4

‘n, =6.133 B=
0.064 « =pB/n, =0.01044; n =4.587 (Q = 280359.9
Jemol ™" A=1.7423 x 10" SAE8620H

N

£=1.7423 x 10" sinh(0.01044¢) ** -

exp ( —280359.9/RT) . (4)
3 SAES8620H
3.1
P
G J P N
P=0é=G+]=f€Udé+f0édU. (5)
G
; J
G ]
m:




* 970 -

38 7

3_
2_ (d) X A e
1-
0-

g -1t
-2r * 950 °C
s ® 1000 °C
- 41050 C
4} % 1100 °C

5 1 1 1 L 1 L 1
350 375 4.00 425 450 475 500 5.25

Ino
A
3 -
©
2 L
l -
0 -
E-1f
-2r +950C
s w 1000 °C
41050 C
4t % 1100 °C
_5 1 L L 1 1 1
210 06 -02 02 06 10 14

In|sinh(ao)]

4 SAE8620H

In|sinh(co)|

- (a) Ino,=ng; (b) né—w,; (c) né—n

+950 C
= 1000 C
41050 C
% 1100 C

1 1 1 1 1
115 135 155 175 195

o
v
14
(d)
1.0F /
0.6
02F
X 0.01 s
-0.2F *01s!
® 055"
-0.6F w5
4 10s!
-1.0 L 1 1 1 1 J
072 074 076 078 080 082 084
1000/T
sinh(ao) ; (d) In sinh(ao) —1000/T

Fig.4 Peak stress fitting under different deformation conditions of SAE8620H steel: ( a) 1na'p—ln£;; (b) lné_o'p; (¢) Ing=In sinh( o) ; (d)

In sinh(@o) —1000/T
m=1
n
de
J 2] ( c) f"
=——=="=21-—]=2|1- 7
Tl P P o |7
n
SAE8620H
Murty
10
¢= [ odi= [ odi+ [ odi=
LO' & fo agde LO' &
i .
— é:é”+ J'p ode. (8)

n

Murty
Prasad -
am 2
= —+m” <0 9
¢ d(In &) (9)
&
&
SAE8620H 40% ( 0.511)
60% ( 0.916) MATLAB
11
Origin 5
3.2
5



SAE8620H *971-

5 SAE8620H . (a) £=0.511; (b) £=0.916
Fig.5 Processing maps of SAE8620H steel at different strains: (a) £=0.511; (b) £=0.916
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Fig.6 Microstructures of SAE8620H steel in different instable and stable regions: () 1000°C 10s~' 0.511;(b) 1050°C 0.1s~" 0.511; (c)
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