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Analysis of LEMs slider mechanisms based on equivalent coupling stiffness
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ABSTRACT The flexure hinge is the key part to implement the movement of lamina emergent mechanisms ( LEMs) . Designing a
flexure hinge with good flexibility and high accuracy is always the key problem to research compliant mechanisms. Considering the ben—
ding and tension equivalent stiffness comprehensively which influence the stiffness and accuracy characteristics of LEMs hinges and
taking the LET hinge as an example the effects of different parameters on bending and tension equivalent coupling stiffness are ana—
lyzed under different loads and the concept of bending torsion and tension compression coupling is introduced. Through the calculations
and analyses of a large number of examples an empirical formula of bending torsion and tension compression equivalent coupling stiff—
ness is derived for the LET flexure hinge. The LEMs slider mechanism is studied based on equivalent coupling stiffness. By the com—
parison of theoretical calculation and simulation results the calculating accuracy of the slider’ s displacement is proved to be improved
by the application of the equivalent coupling stiffness formula and thus the applicability of the equivalent coupling stiffness formula is
verified.

KEY WORDS lamina emergent mechanisms; hinges; stiffness; compliant mechanisms; theoretical calculations; finite element

method

2-3

¢ LEMs

! ( lamina emergent mecha— 5

nisms LEMs) LEMs 7

: 2015-05-28
(51475037)



- 987 -

LEMs 8 Howell LET
LEMs k.,
2krk,
9 eq — 72 . ( 1)
10 K+ 2k k,
LET LET ; k., ky
11 TUFF RUFF ; 12—13
C Y] e 14
S ; Wilding Ly Gi* (;7 ~0.21 LL)
LEMs ; 15—17 k. = ™ (2)
! L.
TL
i El, (3)
- Ly,
G Iy
E Lsz%
= = . 4
C=2+) T2 (4)
(2) ~ (4) (1)
LET 2EGI Ly 1’ ( Lot )
_ 3 Ly (5)
eq .
LET GLy Ly, ( % ~0.21 LL ) +2El, Ly,
™w
LEM
i E v
1 LET 1 L.
1.1 LET (3) LT
: 2 . ABAQUS 1
LET |
LET 1 LET
M LET F M =500
Nemm F=20N 2
1 l l LB]. LTI. LET
7 Ly 2
Ly ' 2 LET
d F
LET
2 3
1 LET
Fig.1 Schematic diagram of the LET flexure hinge
1
E =128 GPa v =0. 35. 2 LET
1 LET Fig.2 Angular displacement nephogram of the LET flexure hinge
Table 1 Parameter values of the LET hinge mm
Ly, Ly, Ly, Ly d t
35 3 10 5 20 0.8
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Table 2 Simulation values of the bending rotation angle of the LET under the coupling pressure of bending torsion and tension compression rad
M/( Nemm)
FIN 100 200 300 400 500 600 700 800 900 1000
0 0. 1904 0. 3808 0.5712 0.7615 0.9518 1. 142 1.332 1.522 1.712 1.902
5 0. 1945 0. 3890 0. 5833 0.7774 0.9713 1. 165 1.358 1.552 1. 744 1.937
10 0. 1981 0. 3961 0. 5936 0. 7909 0. 9880 1. 185 1.382 1.578 1.774 1. 969
15 0.2011 0.4019 0. 602 0. 8020 1. 002 1.202 1.401 1. 601 1. 800 1.998
20 0. 2035 0. 4064 0. 6085 0. 8104 1.012 1.215 1.417 1.62 1. 822 2.024
25 0. 2052 0. 4096 0.6129 0. 8161 1.020 1.224 1. 429 1.634 1. 84 2. 046
30 0. 2063 0.4115 0.6153 0. 8187 1.023 1.228 1.434 1. 643 1.853 2.063
35 0. 2067 0.4120 0.6153 0.8179 1. 021 1. 226 1.433 1. 644 1. 858 2.073
0( ) 0. 1916 0. 3832 0.5749 0. 7665 0. 9581 1. 1497 1.3414 1.533 1. 7246 1.9162
LET
2
4
3 LET T . "
— SRR Rk,
Fig.3 Torque and angle relation curve of the LET flexure hinge at E
different tension values =
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Table 3 Values of a and b at different £ values 1.
& 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 ‘f LET
a 0.021 0.021 0.028 0.028 0.028 0.028 0.028 0.028 3 & a b
b -2.45 -2.45 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 (9) (10) LET
3 4
4 LET

Table 4 Finite element simulated and theoretically calculated equivalent coupling stiffness of LET flexure hinge and their relative error

FIN
3
5 10 15 20 25 30 35
/( Nemmerad ~!) 577.2 565.9 555.8 546.5 538 530.6 524
2.5 /( Nemmerad =) 574. 4 563. 4 553.4 544. 4 536.4 529.4 523.4
1% 0.49 0. 44 0.43 0.38 0.30 0.23 0.11
/( Nemmerad ~") 592.3 582.9 574. 4 566. 6 560 554 549.1
3 /(Nemm-erad ~!) 589.5 581. 1 574. 1 568.5 564.3 561.5 560. 1
1% 0. 47 0.31 -0.05 0.34 0.77 1.35 2.00
/( Nemmerad ~") 516.2 507.7 500. 4 494.2 489.3 485.8 484. 4
3.5 /( Nemm-*rad ~!) 512.1 503.7 496.7 491. 1 486.9 484. 1 482.7
1% 0.79 0.79 0.74 0.63 0. 49 0.35 0.35
/(Nemmerad ~") 509. 1 501.9 495.6 490.7 487. 4 485.9 487.1
4 /( Nemmerad ~!) 503.7 495.3 488.3 482.7 478.5 475.7 474.3
1% 1. 06 1.32 1. 47 1.63 1.83 2.10 2.63
4 5 4 5
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2 =00, -0,) —(6,—6y) (14)
3 =6, = Oy (15)
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Fig.5 Theoretical calculated and simulated values of the equivalent
coupling stiffness of the LET flexure hinge
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Fig.7 Pseudo—igid-body model of the LEMs slider mechanism
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Fig.8 Dimension of the LEMs slider mechanism ( unit: mm)
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Table 5 Comparison between the theoretical and simulated displacement

of the slider mechanism

M/( N*mm) s/mm s”/mm 1%
100 0. 1254 0. 1376 9.73
200 0.5023 0. 5508 9. 66
300 1.1320 1.2417 9.69
400 2.0170 2.2132 9.73
500 3. 1600 3.4702 9.82
800 8. 1960 9.0274 10. 14
1000 12.990 14. 340 10. 39

5 LET
10.39%
LET
2.3
10
% F,. =0. 2

Fp +F,, =0 (23)
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9 LEMS

Fig.9 Displacement nephogram of the LEMs slider mechanism

6 LEMs

Table 6 Comparison between theoretical and simulated displacement of

the slider mechanism considering equivalent coupling stiffness

M/( Nemm) s/mm s’/ mm 1%
100 0. 128 0. 1376 2.07
200 0.512 0. 5508 1.93
300 1. 154 1. 2417 1.94
10 LEMS 400 2.057 2.2132 1.98
Fig. 10  Schematic diagram of mechanical analysis of the LEMs slider 500 3.230 3.4702 2.22
mechanism 800 8.372 9.0274 2. 15
1000 13.27 14. 340 2.16
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