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Effect of TMCP on the microstructure and mechanical properties of Si—Mn series

bainitic steel
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ABSTRACT The effects of two different thermomechanical control processes ( TMCP) including medium temperature slow cooling
and medium temperature isothermal treatment after rolling on the microstructure and mechanical properties of Si—Mn series bainitic
steel were investigated in this paper. The mechanical properties of the steel were studied by a tensile testing machine the microstruc—
ture was characterized by means of scanning electron microscopy and electron backscatter diffraction and the amount of retained
austenite in the steel was determined by X-ray diffraction analysis. The results show that as the starting slow cooling temperature after
rolling rises the tensile strength hardness and tensile strain hardening exponent n increase the elongation rate and the impact tough—
ness decrease and the yield—strength ratio decreases first and then increases. When the isothermal time after rolling extends the
tensile strength and the yield—strength ratio of the steel first decrease and then increase but the elongation and the impact toughness
have a reverse trend. Compared with the isothermal regime the continuous slow cooling can get better comprehensive mechanical prop—
erties the product of tensile strength and elongation is higher and the elongation is 20% higher than that of the former.
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Caballero ~ ° 1 ( )
20 ~ 40 nm Table 1 Chemical composition of the experimental steel %
2300 MPa. 6 C Mn Si Cr v
BF AR 0.3 2.2 0.8 0.8 0. 06
23MnNiCrMo 3

2010  Sharma
b4 mm x 10 mm

1557 MPa 15.5%. DILS05 A
Gao ° BQ&P
42.4GPa%. GB/T 228. 12010 5 mm
CMT—4105
GB/T 229—2007 A%
10 mm X 10 mm x 55 mm
' JB—30B
N X
4%
X
20% . ZEISS
1 Ultra-55 Ultra-55
D8 Advance
25ke X X
1. 80 mm x 60 mm x 60 mm
1200 °C 2h 2
$350 mm
2.1
60 mm—48 mm—38 mm—30 mm—24 mm—19 mm—
15 mm—12 mm 10°Ces™! 950 C 15 min
1100 C 10°Ces™' 550 °C 0.1.0.05 0.01°C-
980 °C 950 C =T 280%C !
910 C 2 . 1 0.1°C*s™" 0.05%Ces™"
0.05%C s
1 0.05%Ces™! 0.1Ces™! . (a) : (b)
Fig.1 Comparison between the changes in linear swell values of the experimental steel when the cooling rate is 0. 05 °C *s ™' and 0. 1 °C*s~': ( a)

change with temperature; (b) change with time
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396.7 C
229.7C; 0.1C+s™ !
346.5 °C 265.7 C.
2.2 Si—Mn
3
450 (1) .500 (2") 550 °C(3%)
0.01°C+s™". 2
4
2 0.01 Ces™!

Fig.2 Changes in linear swell values of the experimental steel when

the cooling rate is 0. 01 °C s !

0.1Ces™" 0.05%Ces™"
: 3
10 Fig.3 Rolling process
2
Table 2 Mechanical properties of the experimental steel
2 0.01%Ces™
421.3C /MPa  /MPa /% 1
1# 730. 32 1346.99 19.77 23.74 0.18 0.542
1I(b
(b) 2# 699. 08 1365.14 19.59 19.15 0.18 0.512
3# 812. 19 1414.38  18.52 22.57 0.17 0.574
-y
4 - (a) i (b)

Fig.4 Change of mechanical properties with final cooling temperature: ( a) yield strength and tensile strength; (b) elongation
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5 . (a) 450°C; (b) 500°C; (c) 550°C
Fig.5 Microstructures of the experimental steel with different final cooling temperatures: (a) 450 °C; (b) 500 °C; (¢) 550C

6 . (a) 450°C; (b) 500°C; (¢) 550°C
Fig.6 Morphology and distribution of retained austenite in the experimental steel with different final cooling temperatures: (a) 450°C; (b) 500°C;
(¢) 550C
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Fig.7 XRD patterns of the experimental steel
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19. 9%

23.3% -~ 21. 4%

. (a) 450°C: (b) 500°C; () 550°C

Fig.8 Fractographs of specimens with different final cooling temperatures: (a) 450 °C; (b) 500 °C; (¢) 550°C

2.3 Si—Mn
9 300 °C
1.2 4h I.0 1. 3
10
11
4 h
12 1.2 4h

9
Fig.9 Rolling process
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17.8% 15. 1%  10.7%.
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Table 3 Mechanical properties of the tested steel

/MPa /MPa /% /1)

I 914.98 1424. 84 15.1 27.72 0.16 0.642
778.76 1384. 13 15.87 20.66 0.15 0.563

It 946. 33 1428.5 15.67 25.12 0.15 0.662 10

Fig.10 Change of mechanical properties with isothermal time

11 . (a) 1h; (b) 2h; (c) 4h

Fig. 11 Microstructures of the experimental steel with different isothermal time: (a) 1h; (b) 2h; (c) 4h

12 . (a) 1h; (b) 2h; (¢)4h

Fig.12 Morphology and distribution of retained austenite in the experimental steel with different isothermal time: (a) 1h; (b) 2h; (c¢) 4h
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Fig.13 XRD patterns of the experimental steel

Fig. 14
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15
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2.4

. (a)

14

550 C

. (a) 1h; (b) 2h;(c) 4h

Fractographs of specimens with different isothermal time: (a) 1h; (b) 2h; (c¢) 4h

; (b)

15

20%

Fig.15 Comparison between the products of tensile strength and elongation of the experimental at different cooling modes: ( a) continuous cooling;

(b) isothermal treatment
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