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Effect of cooling rate on the microstructure and corrosion properties of
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ABSTRACT The effects of cooling rate and Si on the microstructure and corrosion property of the Zn—5A1-0. 1RE alloy were studied
by scanning electron microscopy—energy dispersive spectrometry X-ray diffraction neutral salt spray test and polarization curves. The
results show that Zn—5A1—0. 1RE—xSi alloys are composed of primary n—n phase and n—Zn + a-Al eutectic structure and the former
is uniformly distributed on the adjacent m—<Zn + a-Al eutectic cells. The reduction of cooling rate and the addition of Si make the grain
size increase and the boundary area per unit alloy area decrease; at the same time the corrosion resistance is improved. The corrosion
resistance of the Zn—5A1-0. IRE—xSi alloys is dependent on their solidification structure and the relative amount of corrosion products
including Zng( OH) (Cl, *H,0 and ZnO.
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1 Zn—5Al1-0. 1RE—xSi . (a) 0Si; (b) 0.015Si; (¢) 0Si; ( d) 0.015Si; (e) (¢)
(D (d)
Fig.1 Microstructures of Zn—5A1—0. IRE—Si alloys solidified under different cooling conditions: (a) air cooling 0Si; (b) air cooling 0.015Si;
(¢) water cooling 0Si; (d) water cooling 0.015Si; (e) local magnification of (¢); (f) local magnification of ( d)
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Fig.3 Corrosion morphology of Zn—5A1—0. 1RE—xSi alloys after salt spray test for 40 h: ('a) air cooling 0Si; (b) air cooling 0.015Si; (c) water

cooling 0Si; (d) water cooling 0.015Si; (e) water cooling 0Si without corrosion products; (f) air cooling 0Si without corrosion products
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Fig.4 Corrosion morphology of Zn—5A1—0. 1RE—=Si alloys after salt spray test for 120 h: (a) air cooling 0Si; (b) air cooling 0.015Si; (c) wa—
ter cooling 0Si; (d) water cooling 0.015Si
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Fig.5 Xay diffraction patterns of Zn—5A1—0. IRE—xSi alloy air Zn0 Zn5( OH) 3C12 .HZO

cooling corrosion products after the salt spray test of 120 h
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Fig.6 EDS patterns of Zn—5Al—0. IRE—xSi alloy corrosion products after the salt spray test of 120 h: ('a) ACO; (b) ACO.015
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