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摘 要 运用扫描电子显微镜 /能谱仪、X射线衍射、盐雾实验、电极化曲线等手段，研究冷却速度和 Si 对 Zn--5Al--0. 1ＲE 合

金组织及耐蚀性能的影响． 结果表明，Zn--5Al--0. 1ＲE--xSi合金由先析出的 η-Zn和 η-Zn + α-Al共晶组织组成，前者均匀分布

在相邻的 η-Zn + α-Al共晶胞的边界上． 降低冷却速度和 Si的加入，均使 Zn--5Al--0. 1ＲE--xSi合金单位面积的晶粒增大，晶界

减少，合金耐蚀性能提高． Zn--5Al--0. 1ＲE--xSi合金耐蚀性能的差异与合金凝固组织及合金腐蚀产物中 Zn5 ( OH) 8Cl2·H2O和
ZnO的相对量有关．
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ABSTＲACT The effects of cooling rate and Si on the microstructure and corrosion property of the Zn--5Al--0. 1ＲE alloy were studied

by scanning electron microscopy--energy dispersive spectrometry，X-ray diffraction，neutral salt spray test and polarization curves． The

results show that Zn--5Al--0. 1ＲE--xSi alloys are composed of primary η-Zn phase and η-Zn + α-Al eutectic structure，and the former
is uniformly distributed on the adjacent η-Zn + α-Al eutectic cells． The reduction of cooling rate and the addition of Si make the grain
size increase and the boundary area per unit alloy area decrease; at the same time，the corrosion resistance is improved． The corrosion

resistance of the Zn--5Al--0. 1ＲE--xSi alloys is dependent on their solidification structure and the relative amount of corrosion products
including Zn5 ( OH) 8Cl2·H2O and ZnO．
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热浸镀锌是一种方便有效的钢铁防腐蚀方法． 纯 锌镀层具有优良的牺牲防护作用，但镀层耐用期短，锌
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铝合金镀层兼顾了铝的耐久保护性和锌的阳极保护

性，具有优异的耐蚀性能． 熔池的成分、浸镀温度、时
间和基体成分是影响镀层厚度和耐蚀能力的重要

参数［1］．
热浸镀过程中，随着 Al 含量的提高，人们通常向

熔池中添加适量的 Si来抑制 Fe与 Al之间的剧烈放热
反应． Si 的加入将对合金的性能产生重要影响［2］．
Morimoto等［3］认为，合金中 Al 含量的提高以及适量 Si

的添加可以显著改善 Zn--Al 合金在 NaCl 溶液中的抗
腐蚀性能． Si 可以提高 Zn--Al--Si--ＲE 合金的抗磨损
性能和耐蚀性能［4］． Zn--Al--Mg--Si--ＲE合金比 Zn--Al--

Mg--ＲE 合金具有更好的耐蚀性能［5］． 同时，Elvins
等［6］和 Peney等［7］的研究表明，冷却速度可以显著改
变合金的显微组织并对合金的耐蚀性有一定的影响．
目前，相关研究多集中于 Galvalume 等高铝热浸

镀锌铝合金的改性，而针对 Galfan 合金中添加 Si 的研
究较少． Galfan合金是铝质量分数为 5%、稀土质量分
数为 0. 1%的锌铝共晶合金． 具有良好的成型性能和
抗扭折性能，但是其耐蚀性能与 ZAM、SuperDyma 等锌
铝合金相比仍有较大的差距［8

--9］． 本文针对冷却速度
和硅的加入对 Galfan合金组织及耐蚀性能的影响进行
研究．

1 实验

1. 1 Zn--5Al--0. 1ＲE--xSi合金制备
本实验中制备 Zn--5Al--0. 1ＲE和 Zn--5Al--0. 1ＲE--

0. 015Si ( 质量分数) 合金采用纯度为 99. 9%的锌锭、
99. 9%的铝块为原材料，Si 以 Al--30% Si 中间合金形
式添加，ＲE通过混合稀土形式添加，混合稀土成分为
60% La + 35% Ce + 5%Nd． 合金在石墨坩埚中熔炼，熔
液用混合的覆盖剂保护，覆盖剂组成为 50% NaCl +
25%KCl + 25%Na3AlF6 ． 熔炼温度设置在 700 ℃，稀土
用铝箔纸包裹加入熔池以防止烧损，熔池均匀搅拌并

在 750 ℃保温 30 min 以确保 ＲE 可以完全溶解． 去除
熔池表面的覆盖剂后，将熔液浇注到尺寸为 10 mm ×
10 mm的金属铸模中，冷却方式采用室温下空冷和水
冷． Zn--5Al--0. 1ＲE--0. 015Si 合金空冷样品和水冷样
品分别标记为 AC0. 015 和 WC0. 015，Zn--5Al--0. 1ＲE
合金空冷样品和水冷样品分别标记为 AC0 和 WC0．
1. 2 实验方法

Zn--5Al--0. 1ＲE--xSi合金的耐蚀性能通过盐雾实
验的腐蚀失重结果来表征． 工艺参数如下: 测试工作
面积为 1 cm2，NaCl溶液质量浓度为( 35 ± 5) g·L －1，温

度为( 35 ± 2 ) ℃，pH 值为 6. 5 ～ 7. 2，喷雾压力0. 1 ～
0. 2 MPa，盐雾沉降量为 1 h内每 80 cm2上 1 ～ 2 mL． 用
扫描电子显微镜( SEM) 观察腐蚀产物形貌，用 X射线

衍射( XＲD) 和能谱仪( EDS) 对微区成分进行分析． 用
软毛刷蘸取饱和的醋酸铵溶液清洗合金表面的腐蚀产

物，然后用蒸馏水反复清洗试样，最后吹干用分析天平

称重． 动电位极化曲线测定采用三电极体系［10］，铂电
极作为辅助电极，饱和甘汞电极作为参比电极［11］． 测
试工作面积为 1 cm2的清洁试样作为工作电极． 测试
温度为室温，腐蚀介质为 3. 5% NaCl 溶液． 动电位极
化曲线的测量使用电化学工作站( PGSTAT-302N) ，扫
描速度为 1 mV·s －1，腐蚀初始电位的范围为 － 1. 6 V，
终止电位为 － 0. 4 V． 在测试之前，将试样放在 3. 5%
NaCl溶液中浸泡 3 ～ 5 min以保证腐蚀电位的稳定．

2 结果及分析

2. 1 冷却速度对 Zn--5Al--0. 1ＲE--xSi 凝固组织的
影响

图 1 为不同冷却条件下获得的 Zn--5Al--0. 1ＲE--

xSi合金的显微组织照片． Zn--5Al--0. 1ＲE--xSi 合金由
先析出的 η-Zn和 η-Zn + α-Al共晶组织组成( 图 1 ( e，
f) ) ． 前者均匀分布在相邻的 η-Zn + α-Al 共晶胞的边
界上． 图 1( a，c) 分别为 Zn--5Al--0. 1ＲE合金以空冷及
水冷方式获得的凝固组织． 可以看出，冷却方式不同，
Zn--5Al--0. 1ＲE合金的凝固组织呈现出的形态也不尽
相同． 随着冷却速度的增加，过冷度增加，凝固时形核
数量增加． 由于合金的体积分数相同，从而导致合金
中的初生 η-Zn相与共晶胞的尺寸呈现出明显减小、数
量显著增加的趋势．
图 1 ( c，d ) 分别为水冷条件下获得的 WC0 和

WC0. 015 的背散射显微照片． 可以看出，合金中质量
分数 0. 015% Si的加入，使得初生 η-Zn相的形核数量
减少，晶粒尺寸增大． 同时，初生 η-Zn 相的形貌也发
生显著变化． 随着合金中 Si的添加，初生 η-Zn相由等
轴晶转变成树枝晶． 此外，共晶胞的尺寸也明显增加．
在合金凝固过程中，Si 可以抑制初生相形核并促进其
择优生长［12］． 由于 Si 在 Zn 中没有溶解度，且室温下
在 Al中的溶解度也小于 0. 01%［13］． 因此，Si 主要存
在于初生 η-Zn 相和液相的界面处，从而引起成分过
冷． 随着晶胞前部及周围液体中成分过冷度的增加，
晶胞侧面将产生凹凸或分枝，进行胞状凝固向胞状 －
树枝状凝固的转变［14］． 此外，在共晶组织形成初期，
液相中 Si 的排出以及 Si 固溶到 Al 均需要一定的时
间，在相同过冷度条件下，Si的加入将导致合金的凝固
过程延长，使得共晶胞的尺寸有所增大，如图 1( e，f) ．

Zn--5Al--0. 1ＲE--0. 015Si 合金在不同冷却条件下
获得的凝固组织如图 1( b，d) 所示． 可以看出，合金中
Si的加入以及冷却速度的降低导致的合金凝固组织的
变化较图 1( c，d) 中呈现的变化更加明显．
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图 1 不同冷却条件下 Zn--5Al--0. 1ＲE--xSi合金微观形貌． ( a) 空冷，0Si; ( b) 空冷，0. 015Si; ( c) 水冷，0Si; ( d) 水冷，0. 015Si; ( e) 图( c) 的
局部放大图; ( f) 图( d) 的局部放大图

Fig． 1 Microstructures of Zn--5Al--0. 1ＲE--xSi alloys solidified under different cooling conditions: ( a) air cooling，0Si; ( b) air cooling，0. 015Si;
( c) water cooling，0Si; ( d) water cooling，0. 015Si; ( e) local magnification of ( c) ; ( f) local magnification of ( d)

2. 2 冷却速度对 Zn--5Al--0. 1ＲE--xSi 合金耐蚀性能
的影响

2. 2. 1 合金的化学腐蚀性能
图 2 为不同冷却条件下 Zn--5Al--0. 1ＲE--xSi 合金

在中性盐雾腐蚀实验中测试 40、80 和 120 h 的腐蚀失
重曲线图． 从图中可以看出，AC0. 015 在所测各个时
间段的腐蚀失重均最小，WC0 失重最大． 这表明较慢
的冷却速度及 Si的加入有利于合金耐蚀性的提高．

图 3，图 4 分别为不同冷却速度下获得的 Zn--5Al--

0. 1ＲE--xSi合金经盐雾实验腐蚀不同时间后的显微组
织． 可以看出，合金的成分不同、冷却速度不同，其腐
蚀速率也不相同． 在腐蚀条件相同的情况下，AC0. 015
的腐蚀速率最低，粗大的初生 η-Zn相腐蚀后的残存轮

廓清晰可见，如图 3 ( b) 所示． AC0 的腐蚀速率次之，
而 WC0 的腐蚀速度最快，其腐蚀产物( 图 3 ( c) ) 已经
堆积并开始堵塞腐蚀裂纹．

由 Zn--Al 二元相图［15］可知，Zn--5Al--0. 1ＲE--xSi
合金的凝固组织由少量的先析出 η-Zn 相和含铝质量
分数 5%的共晶组织组成． 在随后的冷却过程中，共晶
相会发生分解反应． 在非平衡凝固过程中，由于冷却
速度的影响，则会得到较为显著的先析出 η-Zn 相． 冷
却速度越快，先析出 η-Zn相越多，如图 1 所示． 因此，
合金的耐腐蚀性能也许与其凝固组织中枝晶的显微结

构以及共晶相的分解密切相关． 一方面，在质量分数
为 3. 5% NaCl溶液中，富铝相的自腐蚀电位高于富锌
相［16］． 因此，凝固组织中先析出的富锌相作为阳极优
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图 2 Zn--5Al--0. 1ＲE--xSi 合金在盐雾实验中腐蚀失重曲线

Fig． 2 Weight loss curves of Zn--5Al--0. 1ＲE--xSi alloys in the salt
spray test

先发生腐蚀［17］，对共晶组织起到了阴极保护的作用．
图 3( e，f) 是 WC0、AC0 盐雾腐蚀 40 h并去除腐蚀产物

后的形貌． 可以看出，η-Zn 相作为腐蚀原电池的阳极
受到较为严重的侵蚀，而共晶组织被侵蚀的程度较弱，

只是缓慢冷却得到的数量较少而尺寸较大的 η-Zn 相
呈现出更强的阴极保护性能． 晶界处阳极相数量的减
少、尺寸增大将使合金寿命延长［6］． 上述现象也同样
存在于添加适量 Si 的合金中． 另一方面，从电化学的
观点出发，共晶组织中的富铝相在质量分数为 3. 5%
NaCl溶液中对于富锌相具有更低的腐蚀速率，可以作
为阴极屏障抵抗腐蚀的扩散; 富铝相间受到侵蚀的区

域被腐蚀产物填充，将有效延缓腐蚀的进程［18］． 富铝
相表面生成的氧化膜也是合金耐蚀性能提高的主要原

因． 此外，冷却过程中共析分解将会造成共晶组织中
两相溶质原子的重新分配，进而对 Zn--5Al--0. 1ＲE--xSi
合金的性能产生较大的影响，粗大的枝晶结构有利于

合金耐蚀性能的提高［19］． 由数量较少、尺寸较大阳极
相和尺寸较大共晶胞组成的合金呈现出较强的耐腐蚀

性能．

图 3 Zn--5Al--0. 1ＲE--xSi合金盐雾实验测试 40 h的腐蚀形貌． ( a) 空冷，0Si; ( b) 空冷，0. 015Si; ( c) 水冷，0Si; ( d) 水冷，0. 015Si; ( e) 水冷，
0Si，已去除腐蚀产物; ( f) 空冷，0Si，已去除腐蚀产物

Fig． 3 Corrosion morphology of Zn--5Al--0. 1ＲE--xSi alloys after salt spray test for 40 h: ( a) air cooling，0Si; ( b) air cooling，0. 015Si; ( c) water
cooling，0Si; ( d) water cooling，0. 015Si; ( e) water cooling，0Si，without corrosion products; ( f) air cooling，0Si，without corrosion products
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腐蚀进程中，合金表面的腐蚀产物的类型、形貌及
分布对其腐蚀速率有着很大影响． 致密的腐蚀产物膜
可阻碍溶液中阴、阳离子的扩散，而对不带电且体积较
大的 O2的扩散阻碍作用更为明显． 随着盐雾腐蚀的不

断延续，合金试样表面的腐蚀产物逐渐变得均匀和连

续，如图 4 所示． AC0. 015 腐蚀产物层最为细密和均
匀，耐蚀性能最好．

图 4 Zn--5Al--0. 1ＲE--xSi合金盐雾实验测试 120 h的腐蚀形貌． ( a) 空冷，0Si; ( b) 空冷，0. 015Si; ( c) 水冷，0Si; ( d) 水冷，0. 015Si

Fig． 4 Corrosion morphology of Zn--5Al--0. 1ＲE--xSi alloys after salt spray test for 120 h: ( a) air cooling，0Si; ( b) air cooling，0. 015Si; ( c) wa-
ter cooling，0Si; ( d) water cooling，0. 015Si

图 5 空冷条件下 Zn--5Al--0. 1ＲE--xSi 合金盐雾实验测试 120 h

的腐蚀产物 X射线衍射图谱

Fig． 5 X-ray diffraction patterns of Zn--5Al--0. 1ＲE--xSi alloy air
cooling corrosion products after the salt spray test of 120 h

图 5 为 AC0 和 AC0. 015 盐雾腐蚀 120 h后获得的
腐蚀产物的 X 射线衍射图谱． 合金的腐蚀产物均由
ZnO、Zn( OH) 2和 Zn5 ( OH) 8Cl2·H2O组成． 但是，通过
相应衍射峰的强度分析可以发现，AC0. 015 中
Zn5 ( OH) 8Cl2·H2O 的质量分数明显高于腐蚀相同时

间的 AC0，而 AC0. 015 中 ZnO 和 Zn ( OH) 2的质量分
数，却明显低于 AC0． 假设腐蚀产物全部为 ZnO，则 Zn
与 O 的原子数比应满足 1 ∶ 1; 而如果腐蚀产物全为
Zn5 ( OH) 8Cl2·H2O，则 Zn 与 O 的原子数比应为 5 ∶ 9．
忽略 H、Al、Cl等元素原子数比的影响，根据图 6 所示
的能谱数据，AC0 及 AC0. 015 表面腐蚀产物 Zn 与 O
原子数比分别为 1∶ 1. 3 和 1∶ 1. 73，均介于 1∶ 1和 5∶ 9之
间，AC0 更接近于 1∶ 1，而 AC0. 015 更靠近 5∶ 9． 这说
明 AC0 表面腐蚀产物以 ZnO为主，AC0. 015 表面腐蚀
产物则以 Zn5 ( OH) 8Cl2·H2O为主． 由于 Zn5 ( OH) 8 Cl2·
H2O比 ZnO和 Zn( OH) 2更致密，对腐蚀介质的阻碍作

用更强［20
--21］． 因此，更多、更致密的 Zn5 ( OH) 8Cl2·H2O

堆积在合金表面，形成致密连续的保护膜，是 AC0. 015
获得优良耐蚀性能的直接原因． 可见，合金中 Si 的加
入没有改变腐蚀产物的类型，但却改变了腐蚀产物中

ZnO和 Zn5 ( OH) 8Cl2·H2O相对量的大小，使合金呈现
出不同的耐蚀性能． 遗憾的是，根据现有的实验数据，
难以对 ZnO和 Zn5 ( OH) 8 Cl2·H2O 相对量的改变做出
合理的解释．
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图 6 Zn--5Al--0. 1ＲE--xSi合金盐雾实验测试 120 h腐蚀产物能谱图． ( a) AC0; ( b) AC0. 015

Fig． 6 EDS patterns of Zn--5Al--0. 1ＲE--xSi alloy corrosion products after the salt spray test of 120 h: ( a) AC0; ( b) AC0. 015

2. 2. 2 合金的电化学腐蚀性能
不同冷却条件下获得的 Zn--5Al--0. 1ＲE--xSi 合金

在 3. 5% NaCl溶液中的动电位极化曲线如图 7 所示．
对于 AC0. 015 而言，由于初生 η-Zn 相是尺寸较大、数
量较少的树枝晶，且组成合金的共晶胞尺寸较大，晶界

较少，腐蚀进程相对缓慢，整个腐蚀过程较为平稳，合

金表面生成相对均匀、致密且稳定保护膜，起到很好的
隔离防护作用，具备极好的耐腐蚀性能，其结果与中性

盐雾实验的测试结果完全吻合，表明适量 Si 的加入能
提高合金在 NaCl溶液中的耐蚀性能，且空冷合金的耐
蚀性能较水冷合金更优．
由电极化曲线拟合得到的相关电化学参数如表 1

所示． WC0 自腐蚀电位 Ecorr为 － 1. 452 V，自腐蚀电流
密度 Icorr为 6. 593 μA·cm －2 ; 冷却速度的降低，自腐蚀

电位 Ecorr正移到 － 1. 361 V，自腐蚀电流密度 Icorr则降低
到 5. 475μA·cm －2 ． 随着 Si的加入，AC0. 015 自腐蚀电
位 Ecorr正移到 － 1. 165 V，而自腐蚀电流密度 Icorr则降低
到 3. 237 μA·cm －2 ． 从热力学上讲，金属的自腐蚀电位
越小，表明金属中阴、阳极之间的电位差越大，即合金
发生腐蚀反应的热力学趋势越大;反之，合金发生腐蚀

图 7 Zn--5Al--0. 1ＲE--xSi合金在 3. 5% NaCl溶液中的动电位极
化曲线

Fig． 7 Potentiodynamic polarization curves of Zn--5Al--0. 1ＲE--xSi
alloys in 3. 5% NaCl solution

反应的热力学趋势较小． 虽然 Si的加入对水冷合金的
自腐蚀电位影响不大，但却明显降低合金的自腐蚀电

流． 合金腐蚀速率 υ 与电极腐蚀电流密度 Icorr呈正比关
系［22］． 因此，Si的加入以及冷却速度的降低使合金的自
腐蚀电位正移，自腐蚀电流密度降低，合金耐蚀性提高．

表 1 Zn--5Al--0. 1ＲE--xSi合金在 3. 5% NaCl溶液中的动电位极化曲线的拟合结果

Table 1 Fitted results of the potentiodynamic polarization curves of Zn--5Al--0. 1ＲE--xSi alloys immersed in 3. 5% NaCl solution

分组 合金 冷却条件 Ecorr /V Icorr / ( μA·cm －2 )

AC0. 015 Zn--5Al--0. 1ＲE--0. 015Si 空冷 － 1. 165 3. 237

WC0. 015 Zn--5Al--0. 1ＲE--0. 015Si 水冷 － 1. 345 3. 533

AC0 Zn--5Al--0. 1ＲE 空冷 － 1. 361 5. 475

WC0 Zn--5Al--0. 1ＲE 水冷 － 1. 452 6. 593

3 结论

( 1) Si的添加和冷却速度的降低没有改变显微组
织的构成，但是明显地影响合金的显微组织形貌，导致

单位面积晶胞界和晶胞表面积的减少． 随着冷却速度
降低，初生 η-Zn相数量减少、尺寸明显增大． Si 的添
加使初生 η-Zn 相由胞状晶转变为树枝晶，且数量减
少、尺寸增大．
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( 2) Si的添加和冷却速度的降低有利于提高合金
的耐蚀性能，Zn--5Al--0. 1ＲE--xSi合金腐蚀产物主要由
ZnO、Zn( OH) 2和 Zn5 ( OH) 8Cl2·H2O组成; Si的添加和
冷却速度的降低没有改变合金腐蚀产物的类型，但可

以改变腐蚀产物中 ZnO 和 Zn5 ( OH) 8 Cl2·H2O 相对量
的大小，使合金呈现出不同的耐蚀性能．
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