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Synthesis and electrochemical properties of graphene /MnO, composites
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ABSTRACT Accordionike MnO,-coated graphene composites were successfully prepared by a facile hydrothermal method at 160
°C. The as—products were characterized by field emission scanning electron microscopy transmission electron microscopy X-ray dif-
fraction energy dispersive spectrometry BET and Raman spectroscopy. The high capacitance of 138 Feg™" at 0.2 A=g™" is achieved
with MnO, /graphene composites as a supercapacitor electrode much higher than that of a single MnO, or graphene electrode. The ex—
cellent electrochemical performance is attributed to the uniform MnO, nanosheet morphology large surface area of graphene and stable
chemical bonding of MnO, on the graphene substrate.
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Fig.1 Schematic diagram of synthesizing the graphene/MnO, composite
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Fig.2 FESEM images of samples: ( a) graphene; (b) MnO,; (c¢) graphene/MnO,; (d) enlarged image of the rectangle in ( c)
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Fig.3 TEM images and EDS spectrum of graphene/MnO,: ( a) low-magnification TEM image; ( b) high-magnification TEM image of A in ( a) ;

(¢) high-magnification TEM images of B in (a) ; (d) EDS spectrum
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Fig.4 XRD patterns ( a) and Raman spectra ( b) of samples
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Fig.6 CV curves (a) of graphene/MnO, MnO, and graphene electrodes at a scan rate of 10 mV+s ™' and galvanostatic charge/discharge curves
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